Obviously it would be better for some purposes if we could coat our iron with another and less easily oxidized metal than with such dissimilar substances as paint or porcelain. Now the nearest relative to iron is nickel, and a layer of this of any desired thickness may be easily deposited by electricity upon any surface however irregular. Nickel takes a bright polish and keeps it well, so nickel plating has become the favorite method of protection for small objects where the expense is not prohibitive. Copper plating is used for fine wires. A sheet of iron dipped in melted tin comes out coated with a thin adhesive layer of the latter metal. Such tinned plate commonly known as "tin" has become the favorite material for pans and cans. But if the tin is scratched the iron beneath rusts more rapidly than if the tin were not there, for an electrolytic action is set up and the iron, being the negative element of the couple, suffers at the expense of the tin.

With zinc it is quite the opposite. Zinc is negative toward iron, so when the two are in contact and exposed to the weather the zinc is oxidized first. A zinc plating affords the protection of a Swiss Guard, it holds out as long as possible and when broken it perishes to the last atom before it lets the oxygen get at the iron. The zinc may be applied in four different ways. (1) It may be deposited by electrolysis as in nickel plating, but the zinc coating is more apt to be porous. (2) The sheets or articles may be dipped in a bath of melted zinc. This gives us the familiar "galvanized iron," the most useful and when well done the most effective of rust preventives. Besides these older methods of applying zinc there are now two new ones. (3) One is the Schoop process by which a wire of zinc or other metal is fed into an oxy-hydrogen air blast of such heat and power that it is projected as a spray of minute drops with the speed of bullets and any object subjected to the bombardment of this metallic mist receives a coating as thick as desired. The zinc spray is so fine and cool that it may be received on cloth, lace, or the bare hand. The Schoop metallizing process has recently been improved by the use of the electric current instead of the blowpipe for melting the metal. Two zinc wires connected with any electric system, preferably the direct, are fed into the "pistol." Where the wires meet an electric arc is set up and the melted zinc is sprayed out by a jet of compressed air. (4) In the Sherardizing process the articles are put into a tight drum with zinc dust and heated to 800° F. The zinc at this temperature attacks the iron and forms a series of alloys ranging from pure zinc on the top to pure iron at the bottom of the coating. Even if this cracks in part the iron is more or less protected from corrosion so long as any zinc remains. Aluminum is used similarly in the calorizing process for coating iron, copper or brass. First a surface alloy is formed by heating the metal with aluminum powder. Then the temperature is raised to a high degree so as to cause the aluminum on the surface to diffuse into the metal and afterwards it is again baked in contact with aluminum dust which puts upon it a protective plating of the pure aluminum which does not oxidize.

PHOTOMICROGRAPHS SHOWING THE STRUCTURE OF STEEL MADE BY PROFESSOR E.G. MARTIN OF PURDUE UNIVERSITY

1. Cold-worked steel showing ferrite and sorbite (enlarged 500 times)

2. Steel showing pearlite crystals (enlarged 500 times)

3. Structure characteristic of air-cooled steel (enlarged 50 times)

4. The triangular structure characteristic of cast steel showing ferrite and pearlite (enlarged 50 times)