Extremely little is known of the nature of nebulae, and no significant classification has yet been suggested; not even a precise definition has been formulated. The essential features are that they are situated outside our solar system, that they present sensible surfaces, and that they should be unresolved into separate stars. Even then an exception must be granted for possible gaseous nebulae which appear stellar in the telescope, but whose true nature is revealed by the spectroscope. It may well be that they differ in kind and do not form a unidirectional sequence of evolution. Some at least of the great diffuse nebulosities, connected as they are with even naked-eye stars, lie within our stellar system; while others, the great spirals, with their enormous radial velocities and insensible proper motions, apparently lie outside our system. The planetaries, gaseous but well defined, are probably within our sidereal system, but at vast distances from the earth.
In addition to these classes are the numberless small, faint nebulae, vague markings on the photographic plate, whose very forms are indistinct. They may give gaseous spectra, or continuous; they may be planetaries or spirals, or they may belong to a different class entirely. They may even be clusters and not nebulae at all. These questions await their answers for instruments more powerful than those we now possess.
Our present hope is to study them statistically, but until motions, either radial or transverse, have been detected we must content ourselves with the problem of their distribution. The first step is to make a systematic survey with powerful telescopes. Fath made a beginning by photographing each of the Kapteyn fields within reach of the Mount Wilson 60-inch reflector with uniform exposures of one hour. He discovered more than eight hundred new nebulae, and confirmed the fact that the small nebulae avoid the Milky Way. This last is vital in its bearing on the question of whether or not these objects belong to our system. A survey with long exposures suggests itself, analogous to that of Kapteyn, but based on the Milky Way rather than on the equator. The writer attempted such a program with the Yerkes 24-inch reflector, giving two-hour exposures. Little progress was made, but one fact stood out, namely, that in the fields of galactic latitude -60° nebulae were very scarce when compared to the numbers met with in galactic latitude +60°.
The tendency of small nebulae to gather in clusters has been known for some time. Stratonoff’s map of the distribution of faint nebulae in the Northern Hemisphere shows it very plainly. Max Wolf’s more detailed study of the ecliptic regions with the 16-inch Bruce camera and the 30-inch reflector demonstrates that within these larger regions of the sky where nebulae tend to congregate there are points of accumulation about which the clustering is more marked. He measured the positions of more than four thousand new nebulae, and devised a classification which, while admittedly formal, offers an excellent scheme for temporary filing until a significant system shall be constructed.
The present paper has to do with certain clusters of small, faint nebulae which the writer found during the years 1914 to 1916 while photographing with the 24-inch reflector of the Yerkes Observatory. From about 1000 uncatalogued objects, 512 in 7 well-defined clusters were chosen for measurement. Known nebulae in the clusters numbered 76; hence there were, in all, some 588 objects, or an average of 84 per cluster. The fields are as given in [Table I].
The problem of measuring and reducing accurate positions of objects at a considerable distance from the center of plates taken with a reflector of so large a focal ratio, 1:4, presented serious difficulties. The area covered by each plate is a square of some 110´ to the side. With the full aperture the stellar images are sensibly round only within 5′ of the optical center of the plate. From there outward the coma becomes more and more prominent, distorting the images first into an oval, and finally, near the edge of the plate, into the shape of an arrow, while the point about which the images build up becomes more and more eccentric. For images of various sizes this point will be at various distances from the centers of figure, and at 40′ from the center will fall very nearly at the point of the arrow. This introduces at once an overwhelming magnitude-error, masking whatever distortion of the field may exist.
TABLE I
| Field | Center (1875.0) | Number | ||||||
|---|---|---|---|---|---|---|---|---|
| α | δ | Known | New | Total | ||||
| I | 1ʰ | 0ᵐ | 30ˢ | +31° | 44′ | 21 | 57 | 78 |
| II | 1 | 42 | 20 | 32 | 0 | 3 | 81 | 84 |
| III | 11 | 3 | 54 | 29 | 27 | 8 | 178 | 186 |
| IV | 13 | 37 | 10 | 56 | 21 | 21 | 52 | 73 |
| V | 14 | 57 | 10 | 23 | 47 | 3 | 49 | 52 |
| VI | 17 | 11 | 22 | 43 | 50 | 5 | 43 | 48 |
| VII | 23 | 14 | 16 | 7 | 27 | 15 | 52 | 67 |
| Total | 76 | 512 | 588 | |||||
If very faint stellar images could be used for reference, this error could be largely reduced. It was necessary, however, to use stars from the catalogues of the Astronomische Gesellschaft for reference, and with the long exposures required for the faint nebulae the images of these stars were very large. At the edge of the plate, for instance, the arrow-shaped image of a star of the ninth magnitude would often be fully a minute of arc in length.
It seemed inadvisable to make an exhaustive study of this magnitude-error, whence the alternatives were to use a restricted portion of the field or to sacrifice accuracy in the reduced positions. The second of these evils was chosen. The positions of the optical centers of images at various distances from the center of the field were determined empirically. Pairs of plates of a region were taken with apertures of 9 inches and with the full 24 inches and were compared in the Zeiss “blink” comparator. With the smaller aperture, and hence the smaller focal ratio, the images near the edge of the plates were sensibly round and small. Superimposed on the 24-inch images, they indicated where the wires should be set in measuring the larger distorted images. Trials were then made, measuring positions of A.G. stars all over the 24-inch plates, until a kind of technique was acquired. Judged by the aims in view and the results obtained, this empirical scheme fully justified itself.