CHAPTER V.
THEORY OF ELECTRICITY.
In the series of chapters on Heat (Vol. II) and in the chapter on Magnetism the word molecule was frequently used synonymously with atom. In chemistry a distinction is made, and as we can better explain the theory, at least, of electricity by keeping this distinction in mind we will refer to it here.
It has been stated that there are between sixty and seventy elementary substances. An elementary substance cannot be destroyed as such. It can be united with other elements and form chemical compounds of almost endless variety. The smallest particle of an elementary substance is called in chemistry an atom. The smallest particle of a compound substance is called a molecule. The atom is the unit of the element, and the molecule is the unit of the compound as such. It follows, then, that there are as many different kinds of atoms as there are elements, and as many different kinds of molecules as there are compounds. If the elements have a molecular Structure then two or more atoms of the same kind must combine to make a molecule of an elementary substance. Two atoms of hydrogen combine with one of oxygen to form one molecule of water. It cannot exist as water in any smaller quantity. If we subdivide it, it no longer exists as water, but as the original gases from which it was compounded.
We have shown in the series on Sound, Heat and Light that they are all modes of motion. Sound is transmitted in longitudinal waves through air and other material substance as vibration. Heat is a motion of the ultimate particles or atoms of matter, and Light is a motion of the luminiferous ether transmitted in waves that are transverse. Electricity is also undoubtedly a mode of motion related in a peculiar way to the atoms of the conductor.
Notice that there is a difference between conduction and radiation. The former transmits energy by a transference of motion from atom to atom or molecule to molecule within the body, while the latter does it by a vibration of the ether outside—as light, radiant heat, and electromagnetic lines of force.
For the benefit of those persons who have not read Vol. II, where the nature of ether is discussed somewhat, let us refer to it here, as it plays an important part in the explanation of electrical phenomena. Ether is a tenuous and highly elastic substance that fills all interstellar and interatomic space. It has few of the qualities of ordinary matter. It is continuous and has no molecular structure. It offers no perceptible resistance, and the closest-grained substances of ordinary matter are more open to the ether than a coarse sieve is to the finest flour. It fills all space, and, like eternity, it has no limits. Some physicists suppose—and there is much plausibility in the supposition—that the ether is the one substance out of which all forms of matter come. That the atoms of matter are vortices or little whirlpools in the ether; and that rigidity and other qualities of matter all arise in the ether from different degrees or kinds of motion.
Electricity is not a fluid, or any form of material substance, but a form of energy. Energy is expressed in different ways, and, while as energy it is one and the same, we call it by different names—as heat energy, chemical energy, electrical energy, and so on. They will all do work, and in that respect are alike. One difficulty in explaining electrical phenomena is the nomenclature that the science is loaded down with. All the old names were adopted when electricity was regarded as a fluid, hence the word "current." It is spoken of as "flowing" when it does not flow any more than light flows.
If a man wants to write a treatise on electricity—outside of the mere phenomena and applications—and wants to make a large book of it, he would better tell what he does not know about it, for in that way he can make a volume of almost any size. But if he wants to tell what it really is, and what he really knows it is, a primer will be large enough. This much we know—that it is one of many expressions of energy.