While Marconi has done more than any other man to improve and popularize wireless telegraphy, history shows that he invented none of the essential elements so far as the system has been made public.

What he seems to have really done was to substitute the coherer of Branly and Lodge, with its adjuncts, for the telephone of Dolbear. There is no doubt but that Marconi has done much to improve and enlarge the capacity of the apparatus and to demonstrate to the world some of its possibilities. He has been an indefatigable worker and deserves great credit; but without the work of those who preceded him he could not have succeeded: the honors should be divided.

This system has been used at various times for reporting yacht-races, and between ships. It is said also to have been used to some extent in the South African War. There is much to be done yet, however, before it can be made entirely reliable for defensive work in time of war. As it is now, all an enemy would have to do to destroy its usefulness would be to set an ether-wave-producer to work automatically anywhere within the "sphere of influence" of the system—to speak diplomatically—when it would render unintelligible any message that should be sent. To make the system of the greatest value some sort of selective receiver must be invented that will select signals sent from a transmitter that is designed to work with it.

There is no doubt but that wireless telegraphy will some time play an important part in many spheres of usefulness.

There is another mode (already referred to) for transmitting signals electrically without wires through the earth instead of through the air, but in this case it is not through the medium of induction, but conduction. It has been explained in former chapters that earth-currents are constantly flowing from one point to another where the potentials are unequal. Sometimes these inequalities of potential are caused by heat and sometimes by electricity, as in the case of a thunder-storm. If a cloud is heavily charged with positive electricity, say, the earth underneath will have an equal charge of negative electricity. Let us illustrate it by the tides. As the moon passes over the ocean it attracts the water toward it and tends to pile up, as it were, at the nearest point between the earth and the moon. Suppose that (while the water is thus piled up at a point under the moon) we could suddenly suspend the attraction between the earth and the moon—the water would begin immediately to flow off by the force of gravitation until it had found a common level. Suppose in the place of the moon we have a cloud containing a static charge of positive electricity—it attracts a negative charge to a point on the earth nearest the cloud. If now a discharge takes place between the earth and cloud the potential between the two will suddenly become equalized and the static charge that was accumulated in the earth is released and it dissipates in every direction, seeking an equilibrium, following the analogy of the water; the difference being that in one case the movement is very slow, while in the other it is as "quick as lightning."

About eighteen years ago I had a short telephone-line between my house and that of one of my neighbors. This line was equipped with what was known in those days as magneto-transmitters, such as we have described in a previous chapter on the subject of telephony. When a line is equipped in this way no batteries are needed, as the voice generates the current, on the principle employed in the dynamo-electric machine. Often on summer evenings, when the sky appears to be cloudless, we can see faint flashes of lightning on the horizon, an appearance which is commonly called "heat-lightning." As a matter of fact, I do not suppose there is any such thing as heat-lightning, but what we see is the effect of very distant storm-clouds. Often at such times I have held the telephone receiver to my ear and could hear simultaneously with each flash a slight sound in the telephone. This effect could be produced in the earth by a simple discharge between two or more clouds, which would distribute the electrical discharge over a greater area. And because my line had connection with the earth it could have been disturbed electrically by conduction instead of induction; or it may have been the effect of ether-waves set up by the lightning discharges. There is no doubt in my mind but that both of these effects (ether-waves and conduction through earth) may be felt when a discharge takes place between a cloud and the earth.

If we could, by operating an ordinary telegraphic key, cause the lightning to discharge from cloud to earth, and some one was listening at a telephone in a circuit that was grounded at both ends 100 miles or more distant from the cloud, the man who controlled the discharges by the key could transmit the Morse code through the earth to the man who was listening at the telephone. Thousands of people might be listening at telephones in every direction from the transmitting-station, and they would all get the same message. If the receiving-station is near to the point where there is a heavy discharge from the clouds to the earth the earth-current is very strong—flowing out in every direction. For some years I had an underground line between my house and laboratory, and no part of the line between the two stations was above ground. Many and many times during the prevalence of a thunder-storm have the telephone-bells been made to ring at both ends of the line by a discharge from the cloud to the earth, and in some cases the discharge was several miles away. The wires could not have been affected so powerfully in any other way than through the earth.

It will be seen by the foregoing statements that it is possible to transmit messages through the earth for long distances, but the difficulty in the way of its becoming a general system is twofold. First, we cannot always have a thunder-cloud at hand from which to transmit our signals, and, secondly, the signals would be received alike at every station simultaneously.