Franklin had the theory that most investigators had at that time, that electricity was a fluid and that certain substances had the power to hold it. There were two theories prevalent in those days—both fluid theories. One theory was that there were two fluids, a positive and a negative. Franklin held to the theory of a single fluid, and that the phenomenon of electricity was present only when the balance or natural amount of electricity was disturbed. According to this theory, a body charged with positive electricity had an excessive amount, and, of course, some other body somewhere else had less than nature had allotted to it; hence it was charged with negative electricity. A Leyden jar, for instance, having one of its coatings (say the inside) charged with positive or + electricity, the other coating will be charged with negative or - electricity. The former was only a name for an amount above normal and the latter a name for a shortage or lack of the normal amount.
As we have said, Franklin believed in the identity of lightning and electricity, and he waited long for an opportunity to demonstrate his theory. He had the Leyden jar, and now all he needed was to establish some suitable connection between a thunder-cloud and the earth.
Previous to 1750 Franklin had written a paper in which he showed the likeness between the lightning spark and that of frictional electricity. He showed that both sparks move in crooked lines—as we see it in a storm-cloud, that both strike the highest or nearest points, that both inflame combustibles, fuse metals, render needles magnetic and destroy animal life. All this did not definitely establish their identity in the mind of Franklin, and he waited long for an opportunity, and finally, finding that no one presented itself, he did what many men have had to do in other matters; he made one.
In the month of June, 1752, tired of waiting for a steeple to be erected, Franklin devised a plan that was much better and probably saved the experiment from failure; for the steeple would probably not have been high enough. He constructed a kite by making a cross of light cedar rods, fastening the four ends to the four corners of a large silk handkerchief. He fixed a loop to tie the kite string to and balanced it with a tail, as boys do nowadays. He fixed a pointed wire to the upper end of one of the cross sticks for a lightning-rod, and then waited for a thunder-storm. When it came, with the help of his boy, he sent up the kite. He tied a loop of silk ribbon on the end of the string next his hand—as silk was known to be an insulator or non-conductor—and having tied a key to the string he waited the result, standing within a door to prevent the silk loop from getting wet and thus destroying its insulating qualities. The cloud had nearly passed and he feared his long waited for experiment had failed, when he noticed the loose fibers of the string standing out in every direction, and saw that they were attracted by the approach of his finger. The rain now wet the string and made a better conductor of it. Soon he could draw sparks with his knuckle from the key. He charged a Leyden jar with this electrical current from the thunder-cloud, and performed all the experiments with it that he had done with ordinary electricity, thus establishing the identity of the two and confirming beyond a doubt what he had long before believed was true. In after experiments Franklin found that sometimes the electricity of the clouds was positive and at other times negative. From this experiment Franklin conceived the idea of erecting lightning-rods to protect buildings, which are used to this day.
The news spread all over Europe, not through the medium of electricity, however, but as soon as sailing vessels and stage-coaches could carry it. Many philosophers repeated the experiments and at least one man sacrificed his life through his interest in the new discovery. In 1753 Professor Richman of St. Petersburg erected on his house a metal rod which terminated in a Leyden jar in one of the rooms. On the 31st of May he was attending a meeting of the Academy of Sciences. He heard a roll of thunder and hurried home to watch his apparatus. He and one of the assistants were watching the apparatus when a stroke of lightning came down the rod and leaped to the professor's head. He was standing too near it and was instantly killed.
Passing over many names of men who followed in the wake of Franklin we come to the next era-making discovery, namely, that of galvanic electricity. In the year 1790 an incident occurred in the household of one Luigi Galvani, an Italian physician and anatomist, that led to a new and important branch of electrical science. Galvani's wife was preparing some frogs for soup, and having skinned them placed them on a table near a newly charged electric machine. A scalpel was on the table and had been in contact with the machine. She accidentally touched one of the frogs to the point of the scalpel, when, lo! the frog kicked, and the kick of that dead frog changed the whole face of electrical science. She called her husband and he repeated the experiment, and also appropriated the discovery as well, and he has had the credit of it ever since, when really his wife made the discovery. Galvani supposed it to be animal electricity and clung to that theory the rest of his life, making many experiments and publishing their results; but the discovery led others to solve the problem.
Alessandro Volta, a professor of natural philosophy at Pavia, Italy, was, it must be said, the founder of the science of galvanic or voltaic electricity. Stimulated by the discovery of Galvani he attributed the action of the frog's muscles, not to animal electricity, but to some chemical action between the metals that touched it. To prove his theory, he constructed a pile made of alternate layers of zinc, copper, and a cloth or pasteboard saturated in some saline solution. By repeating these trios—copper, zinc, and the saturated cloth—he attained a pile that would give a powerful shock. It is called the Voltaic Pile.
I have a clear idea of the construction of this form of pile, founded on experience. It was my habit when a boy to make everything that I found described, if it were possible. The bottom of my mother's wash-boiler was copper, and just the thing to make the square plates of copper to match the zinc ones, made from another piece of domestic furniture used under the stove. I shocked my mother twice—first with the voltaic pile that I had constructed, and again when she found out where the metal plates came from. The sequel to all this was—but why dwell upon a painful subject!
Galvanism and voltaic electricity are the same. Volta was the first to construct what is termed the galvanic battery. The unit of electrical pressure or electromotive force is called the volt, and takes its name from Volta, the great founder of the science of galvanic or voltaic electricity. From this pile constructed by Volta innumerable forms of batteries have been devised. The evolution of the galvanic battery in all its forms, from Volta to the present day, would fill a large volume if all were described.
The discoveries of Michael Faraday (1791-1867), the distinguished English chemist and physicist, led to another phase of the science that has revolutionized modern life. Faraday made an experiment that contains the germ of all forms of the modern dynamo, which is a machine of comparatively recent development. He found that by winding a piece of insulated wire around a piece of soft iron and bringing the two ends (of the wire) very close together, and then placing the iron across the poles of a permanent magnet and suddenly jerking it away, a spark would pass between the two ends of the wire that was wound around the piece of soft iron. Here was an incipient dynamo-electric machine—the germ of that which plays such an important part in our modern civilization.