In settled, dry weather as the sun approaches the zenith, the earth becomes intensely heated, and there is an ascending column of air partly laden with moisture; but not to the same extent as earlier in the season. Condensation takes place and clouds are formed, but as there is not sufficient moisture to carry them to the point of a further condensation,—which would result in precipitation,—as the sun lowers in the west and the heated air becomes more evenly distributed this condensed vapor is reabsorbed into the air as invisible moisture by a process allied to that of evaporation. This condition of things would extend to a much longer period than it does in our latitude if it were not for the gradual changing of the seasons, which finally destroys the balance in the dynamics of cloud-land and allows the cold—that has been held back for the time—in the great northern zone to get the upper hand. Then we have what is termed in common parlance a change in the weather, or, more properly in this case, a change in the season.
We have already spoken of the cloud called cumulus (which means heap) and of its performance during the dry season of summer. There is another form of cloud that is seen at this season of the year called cirrus (a curl). It takes the form of a curl at its ends. This cloud usually has a threaded shape and sometimes takes the form of a feather, and frequently forms are seen that remind you of frost pictures on a window pane. These clouds float very high in the atmosphere, away above the tops of the highest mountains, from six to eight miles above the level of the sea. They are formed only at a season of the year when the atmospheric conditions are most uniform. At certain times of the day and night the moisture will rise to this height before it condenses and when it does condense it immediately freezes, which makes it take on these peculiar forms that would no doubt conform very closely to the frost pictures on the window pane if it were not for the disturbing influences of air currents at this altitude. The fact that they are ice or frost clouds instead of water clouds gives them that peculiar whiteness and brightness of appearance. If ordinary clouds are water-dust these high clouds may be called ice-dust. Sometimes we see them lying in bands or threads running across the sky in the direction that the wind blows. Their form is undoubtedly a resultant of the struggle between the air currents and the tendency of crystallized water to arrange itself in certain definite lines or forms. This cloud may be said to be one extreme, having its home in the highest regions of cloud-land, while the cumulus, or thunder cloud, is the other extreme and occupies the lower or mid regions of the air.
There is a still lower cloud of course, as ordinary fog is nothing more than cloud, which under certain conditions lies on the surface of the ocean or dry land. Fogs prevail when the barometer is low. As soon as it rises from the source of evaporation the moisture condenses almost to the point of precipitation. There is not enough buoyancy in its globules when the air is light, as it is when we have a low barometer, to cause the fog to float into the higher regions of the atmosphere.
The high clouds, which are called cirrus, under certain conditions drop down to where they begin to melt into ordinary moisture globules, and while this process is going on we have a combined cloud effect which is called cirro-stratus. This form of cloud may be recognized, when looking off toward the horizon, by its being formed into long straight bands. It is sometimes called thread-cloud. As it further descends it takes on a different form called the cirro-cumulus, or curl-heap. This is just the opposite in its appearance to the cirro-stratus, as it is broken up into flocks of little clouds separated from each other and in the act of changing to the form of the cumulus, or billowy form of cloud; and this latter takes place when it drops to a still lower stratum of warmer air and is there called the cumulo-stratus, which is the form of cloud we most often see in the season of thunderstorms. The lower edge of the cloud is straight, parallel with the horizon, while the upper part is made up of great billowy masses, having high lights upon their well defined projections and blending into darker shades caused by the shadows in the valleys between the mountains of cloud.
The rain cloud is called the nimbus, and may be said to be the extension of a cumulo-stratus. When it reaches this condition it is condensed to a point where the vesicular globules collapse and a number of them run together, forming a solid drop of water, and here it begins to fall. It may be very small at first, but in its fall other condensed globules will adhere to it and if the conditions are right, sometimes the rain drops will have the diameter of a quarter of an inch by the time they reach the earth.
Under other conditions, such as we have sometimes during dry weather, the rain drops will start to fall, but instead of growing larger, they grow smaller by absorption into the thirsty air, and will not be allowed to reach the earth. Often there are showers of rain in the air that fall to a certain distance and are taken up, as in the process of evaporation, to again be formed into cloud, without ever having touched the earth.
Thus it will be seen that clouds assume various forms under various conditions of atmosphere, as it is related to moisture, temperature, and density. Clouds sometimes appear to be stationary when they are only continually forming on one side and continually being absorbed into invisible moisture on the other. I remember seeing some wonderfully beautiful cloud effects in the regions of the Alps. Almost every day in summer there appears above the peak of Mount Blanc a beautifully formed cloud cap standing some distance above it and hollowed out underneath like an inverted cup. Although this cloud appears to be stationary, it is undergoing a rapid change; the moisture rises from the snow-capped peak as invisible vapor to a certain distance, where it is condensed into a cloud of wonderful brilliancy. As the cloud globules float upward they are absorbed into the atmosphere again, as invisible moisture at the upper limit of the cloud. If the wind happens to be blowing, another phenomenon takes place, giving the appearance somewhat of a volcano. It is blown off from the peak in the direction of the wind, but within a short distance it strikes a warmer stratum of air, where it is absorbed and assumes the transparent condition.
If we ascend a high mountain, we get some idea of the altitude of the various forms of cloud. A thunderstorm may be in progress far below us, while the sun may be shining from a clear sky above, with perhaps the exception of the frost clouds that we have referred to floating high above the mountain tops.
We have now described in a general way how clouds are formed, how they are condensed into rain, and how moisture is distributed over large areas by these rain clouds being borne on the wings of the wind; and now you ask, Whence the wind? In our next and following chapters we will try to answer this question.