Fig. 3.

Now let us go back to the barometer and see what part it plays in predicting changes in the weather. At the area of low pressure the air is ascending, as we have seen, and, owing to the peculiar way it ascends—by circling spirally upward around a region of comparative calm—it creates a partial vacuum, which is more pronounced in the center of the area. At the area of high pressure the air will be condensed by the descending current being arrested by the earth. The descending current—coming, as it does, from the upper and colder regions—accounts for the cool weather that most always prevails at a high-pressure area. In order to know how great the change of weather is likely to be, we must know what the readings of at least two barometers are—one at the high- and another at the low-pressure area. If the difference between the readings of the two barometers is very great, and the areas are comparatively close together, we may expect the change to be sudden and violent.

"High" and "low" as applied to a barometer are only relative terms. There is no fixed point on the index of the instrument that can be said to be arbitrarily high or low. For this reason a single barometer is not of much use. If it begins to fall from any point, and falls rapidly, it indicates that an area of a much lower pressure is approaching. The same is true of a high-pressure area, if the barometer rises rapidly from any point.

If we study the air motions in these systems sufficiently to get at least an inkling of the law of their movements, it becomes a very interesting subject.

Wind from whatever cause serves a wonderfully useful purpose in the economy of nature. Without wind, heat and moisture could not be distributed over the face of the earth and our globe would not be a fit habitation for man. How wonderful is the machinery of Nature, that can first forge a world into shape and afterward decorate it with green grass and flowers that are watered by the "early and latter rain"!


CHAPTER XII.

LOCAL WINDS.