Another preglacial river had its rise in the region of Lake Huron and flowed through an old river bed extending from the Georgian Bay in a southeasterly direction through the province of Ontario, and emptied into the present Lake Ontario. From Lake Ontario there is an old river bed running through the Valley of the Mohawk which empties into the Hudson at Troy. Neither of these two rivers, having their sources in the north, found an outlet through the present St. Lawrence River. During the time of the glacial period there is evidence that there was more than one center of snow and ice accumulation and each of these great centers probably had several subcenters. This theory has color given to it by the directions of movement shown by the glacial drift.

The rounded appearance of bowlders was caused by the grinding action of the ice. These bowlders, when they were first torn from their rocky beds by the irresistible power of ice pressure, were rough and jagged in shape, the same as any rock would be, torn from a quarry by a blast. They have been smoothed and rounded by rubbing against the moving ice and against each other in the progress of their long journey from their original homes. Where their home was the geologist can immediately tell upon examination. It is only necessary then to examine the bowlders of any particular locality to determine the direction of the ice flow at that point.

There seem to have existed centers of ice accumulation to the north of all of the great lakes. And when they had grown to a sufficient height they joined at their edges, making one grand glacier, the movements of which were the resultant of the combined pressure exerted by these great centers of power, so that all of North America north of the line of the terminal moraine, with the exception of a small area (heretofore noted) chiefly in Wisconsin, became covered with one vast sheet of ice.

The glacier north of Lake Superior widened out the old river bed by a process of erosion to its present width.

There may have existed something of a lake in preglacial times, through which the river ran, but it undoubtedly owes its present width to the grinding action of the irresistible icebergs and the piling up of débris on the shores. The river bed was filled up by a glacial drift at the point of its present outlet until the lake was raised in its level much higher than that of Lake Michigan. Another glacier plowed down through Lake Michigan, widening it out to its present dimensions, while the glacial drift was deposited at what is now the head of the lake, filling up the old outlet and thus making a great dam. The damming up of these great water courses was another cause for increasing the width of these lakes. In a similar way Lake Erie was formed. It is supposed, however, that this lake is entirely the product of glacial action, as there is no evidence of an old river bed in its bottom; besides, it is much shallower than the other lakes. The same action that formed Lake Erie filled up the old river bed running through the province of Ontario, so that when the ice receded Lake Erie became the new channel for the old river. The same process filled up the Valley of the Mohawk to more than 100 feet in depth and also raised the Valley of the Hudson. This caused the new channel to be made through the Niagara River and a new route to the ocean for the drainage of all the chain of lakes through the St. Lawrence. It will be seen that the bottoms of all of these great lakes to a certain extent were worn out by the action of running water, except Erie. The great glaciers widened them out, and in the case of Lake Erie scooped it out. At the same time it built great dams across the outlets which raised the surface of the water to a much higher level and caused them to form new outlets, thus changing the whole face of the country over which the ice drifted.

The glaciated region of North America is among the most productive in the world, and in many respects presents a most pleasing landscape.

Other lakes besides these mentioned have been formed during the ice period through blocking the course of a river by the ice itself. Dr. Wright, during the time he traced out the line of the terminal moraine, discovered that the ice sheet crossed the Ohio River at a point near Cincinnati, where there is a great bend to the northward in the river. With the exception of this point and perhaps another point below, the edge of the great ice sheet kept a little north of the Ohio River. At this point, however, the ice seems to have filled the valley from hill to hill, which very naturally would form a great dam or lake in the Ohio Valley. Of course such a lake could not be permanent, because, when the ice melted away, it again opened the channel and allowed the water to flow off.

Some years before this discovery was made there were terraces found along the banks of the Ohio River and its tributaries that had been the subject of much speculation. It is well known that by the action of water from rainfall, earth, gravel, and other débris will wash down the side of a hill or mountain until it strikes a water level, and there it will build out a terrace near the level of the water surface. The width of these terraces will be determined by the time the water has stood at that level and the extent and nature of the soil from which the débris comes. The evidences that are cited, pro and con, would fill a small volume, but it is sufficient to say here that the sum of the evidence goes to show that there was an ice dam formed at a point near Cincinnati and that it was maintained for a considerable period of time. Terraces were formed running up the Ohio and its tributaries corresponding to the level that the water must have risen to if the valley were filled up with ice. These facts, taken with the greater fact that the ice sheet actually did cross the Ohio Valley into Kentucky, as is shown by the terminal moraine, seems to prove conclusively the existence of such a lake during the period that the ice rested at its extreme limit. The fact that in some places successive terraces are found does not disprove the theory, because it is more than likely that when the ice receded it did so in successive stages, remaining at different positions for a considerable length of time. There is abundant proof of this in the successive moraines and also in the formation of successive terraces. Some of these terraces could have been formed from other causes.

It does not require any great stretch of the imagination to understand how numerous lakes, much larger than any at the present day, may have extended over large portions of the West and Northwest during the period that the ice was receding. The ice did not stand with an even thickness over the surface of the glaciated area, but at some points it moved down in great lobes, which marked the lines of greatest pressure as well as the greatest accumulation. As the ice melted away, the thick bodies of ice might be many, many years in melting, and they might block the outlet to a very extensive drainage area and thus form a great inland sea from the vast amounts of water that would come from the melting ice.

All of the region about Winnipeg, in the Red River country, covering great areas of hundreds of miles in extent, is a level plain only lacking the coloring to give to one passing through it the effect of a great unruffled sea. There is no doubt but that all of this region was the bottom of a great lake at some period when the ice was receding. And this accounts for the great depth of black soil that we find in this and other regions. The soil was a water deposit, such as may be found in the bottom of any shallow lake or pond to-day, and thus many thousand years ago provision was made for the fertile areas which to-day are feeding the world with wheat.