FIG. 18.—FOSSIL TREE FERNS.

During this long period of comparative quiet most of the irregularities on the surface of the earth became worn down, and extensive swamps were produced by partial evaporation of the inland lakes. These swamps were subject to occasional inroads of the sea, and at times formed shallow lakes or lagoons; in these grew the most luxuriant vegetation, gigantic pines, tree-ferns (fig. 18), equisetacæ, &c. These plants, nurtured by a hot and moist climate, acquired a great luxuriance of growth, and must have formed forests of such great density, that there is nothing existing at the present time worthy to be compared with them, even in the hottest climates. Such fertility appears to have been dependent upon the conditions of the air and earth, the former containing more carbonic acid (the food of vegetables) and the latter a greater amount of warmth, than at present; these two circumstances, so favourable to the growth of plants, were equally unfavourable to the existence of air-breathing animals, to whom the carbonic acid would be fatal poison.

Thus, in the mighty hands of God, the air was undergoing a gradual purification, to fit it for the animals He intended to create; the polypi were extracting from the water all the carbonate of lime it was absorbing from the air and earth, and fixing it in the soil, to be of use in a hundred ways at some future time, while the vegetation growing in abundance extracted it from the air, and fixed its carbon in their leaves and substance generally; these vegetables, decaying and falling upon the surface of the earth, accumulated there for ages, and formed a carbonaceous matter which was afterwards changed by time and pressure into coal. The same thing (on a very much smaller scale) is taking place in the tropical forests of the present age; there the surface-soil is quite black, and consists of nothing but decayed leaves and wood for several feet in depth, but in the present time there are hosts of insects, every one of which feeds upon this vegetable matter, preventing to a great extent its accumulation, while in the former age there was nothing to destroy it when once deposited on the ground; so that the carbon of these forests of the secondary period, existing through perhaps tens of thousands of years, extracted from the air a sufficient quantity of vegetable carbonaceous matter to produce thick seams of coal, even when compressed by the superincumbent strata. These forests were subject from time to time to inroads of the sea produced by the before-mentioned causes, and thus it is found that the seams of coal are often buried by several hundred feet of sand, clay, shale, &c., above which the same growth recommenced to form a second strata of coal, and ages must have elapsed whilst each of the numerous seams which interstratify the "coal measures" were forming. This coal, preserved in the depths of the earth, now forms the greatest treasure of the mine, and ironstone (from which iron is procured) would be almost useless but for the occurrence of these two minerals together with limestone (used as a flux) in the same locality, and it is this fortunate circumstance which enables England to produce such vast quantities of iron at such a cheap rate. The quantity of coal consumed in the iron-smelting works and for fuel generally, is beyond what could have been imagined a generation or two back, being somewhere about 50,000,000 tons annually, the coal brought to London alone in 1856 being 1,271,800 tons, yet there is such a plentiful supply of this valuable fuel in Great Britain alone that, supposing the annual consumption to rise to 70,000,000, it would serve (according to computation) a thousand years. Who shall say from whence fuel will then be obtained? probably from some other source provided by the foreknowledge of God, as was shown in the formation of the coal itself; for who could have imagined, a thousand years ago, when England possessed such immense forests, and wood was the universal fuel, that this very wood would become too scarce and valuable to be used, and that a substitute would be dug out of the earth!

The coal-shales (thin layers of claystone found in the coal seams) furnish beautiful specimens of ferns and other plants turned into coal (fig. 19), or leaving their perfect impressions in the clay. The coal formation occurred during the latter part of one of those long eras of tranquillity which supervened upon the contraction and breaking-up of the older strata; but the laws of nature are immutable, and these days of comparative quiet again came to a close. The same phenomena before described again occurred, and there is hardly a square mile of these strata but shows evidences of the terrible convulsion which desolated the earth. Some of the strata were raised, others depressed, and some lost altogether, the cracks and flaws being filled with liquid lava or basalt, which in many cases rose upwards through them and overflowed the surface. Many of the cracks of this, the "carboniferous system," are filled with sulphuret of lead called "galena," the ore from which all the lead of commerce is obtained; it is not well known how the veins of this and similar substances got into these crevices, but it is probable they were injected in a fluid state by some unequal pressure on the liquid beneath, or deposited by electrical action.

FIG. 19.—FERN (Pecopteris ligata) FROM UPPER SHALE, SCARBOROUGH.

The great world of vegetation was thus destroyed, giving place to new forms of animal and vegetable life. The temperature, all this while sinking, had reached a degree somewhat resembling the hottest regions of the earth at the present day. The waters had changed their localities, new mountains and new continents had made their appearance, and again did the ever-active waters begin to demolish and wear down the asperities of the surface and deposit the results upon the strata below in the form of the new red sandstone and magnesian limestone, the former containing iron in great abundance, and the latter magnesia (an earth not met with before), both of which substances were probably ejected as volcanic products and afterwards combined with the carbonic acid of the air.

FIG. 20.—LABYRINTHODON.