because the reduced oceans cannot give them so much heat. Moreover, the larger the land, the more generally do the winds blow outward from it in winter and thus prevent the ocean heat from being carried inland. So long as the ocean is not frozen in high latitudes, it is generally the chief source of heat in winter, for the nights are several months long near the poles, and even when the sun does shine its angle is so low that reflection from the snow is very great. Furthermore, although on the average there is more reflection from water than from land, the opposite is true in high latitudes in winter when the land is snow-covered while the ocean is relatively dark and is roughened by the waves. Another factor in causing large lands to have extremely low temperature in winter is the fact that in proportion to their size they are less protected by fog and cloud than are smaller areas. The belt of cloud and fog which is usually formed when the wind blows from the ocean to the relatively cold land is restricted to the coastal zone. Thus the larger the land, the smaller the fraction in which loss of heat by radiation is reduced by clouds and fogs. Hence an increase in the land area is accompanied by an increase in the contrasts in temperature between land and water.

(b) The contrasts in temperature thus produced must cause similar contrasts in atmospheric pressure, and hence stronger barometric gradients. (c) The strong gradients would mean strong winds, flowing from land to sea or from sea to land. (d) Local convection would also be strengthened in harmony with the expansion of the lands, for the more rapid heating of land than of water favors active convection.

(e) As the extent of the ocean diminished, there would normally be a decrease in the amount of water vapor for

three reasons: (1) Evaporation from the ocean is the great source of water vapor. Other conditions being equal, the smaller the ocean becomes, the less the evaporation. (2) The amount of water vapor in the air diminishes as convection increases, since upward convection is a chief method by which condensation and precipitation are produced, and water vapor removed from the atmosphere. (3) Nocturnal cooling sufficient to produce dew and frost is very much more common upon land than upon the ocean. The formation of dew and frost diminishes the amount of water vapor at least temporarily. (f) Any diminution in water vapor produced in these ways, or otherwise, is significant because water vapor is the most essential part of the atmosphere so far as regulation of temperature is concerned. It tends to keep the days from becoming hot or the nights cold. Therefore any decrease in water vapor would increase the diurnal and seasonal range of temperature, making the climate more extreme and severe. Thus a periodic increase in the area of the continents would clearly make for periodic increased climatic contrasts, with great extremes, a type of climatic change which has recurred again and again. Indeed, each great glaciation accompanied or followed extensive emergence of the lands.[86]

Whether or not there has been a progressive increase from era to era in the area of the lands is uncertain. Good authorities disagree widely. There is no doubt, however, that at present the lands are more extensive than at most times in the past, though smaller, perhaps, than at certain periods. The wide expanse of lands helps explain the prominence of seasons at present as compared with the past.

II. The contraction of the earth, as we have seen, has produced great changes in the distribution as well as in the extent of land and water. Large parts of the present continents have been covered repeatedly by the sea, and extensive areas now covered with water have been land. In recent geological times, that is, during the Pliocene and Pleistocene, much of the present continental shelf, the zone less than 600 feet below sea level, was land. If the whole shelf had been exposed, the lands would have been greater than at present by an area larger than North America. When the lands were most elevated, or a little earlier, North America was probably connected with Asia and almost with Europe. Asia in turn was apparently connected with the larger East Indian islands. In much earlier times land occupied regions where now the ocean is fairly deep. Groups of islands, such as the East Indies and Malaysia and perhaps the West Indies, were united into widespreading land masses. Figs. 7 and 9, illustrating the paleography of the Permian and the Cretaceous periods, respectively, indicate a land distribution radically different from that of today.

So far as appears from the scattered facts of geological history, the changes in the distribution of land seem to have been marked by the following characteristics: (1) Accompanying the differentiation of continental and oceanic segments of the earth's crust, the oceans have become somewhat deeper, and their basins perhaps larger, while the continents, on the average, have been more elevated and less subject to submergence. Hence there have been less radical departures from the present distribution during the relatively recent Cenozoic era than in the ancient Paleozoic because the submergence of continental areas has become less general and less frequent. For example, the last extensive epeiric or interior

sea in North America was in the Cretaceous, at least ten million years ago, and according to Barrell perhaps fifty million, while in Europe, according to de Lapparent,[87] a smaller share of the present continent has been submerged since the Cretaceous than before. Indeed, as in North America, the submergence has decreased on the average since the Paleozoic era. (2) The changes in distribution of land which have taken place during earth history have been cyclic. Repeatedly, at the close of each of the score or so of geologic periods, the continents emerged more or less, while at the close of the groups of periods known as eras, the lands were especially large and emergent. After each emergence, a gradual encroachment of the sea took place, and toward the close of several of the earlier periods, the sea appears to have covered a large fraction of the present land areas. (3) On the whole, the amount of land in the middle and high latitudes of the northern hemisphere appears to have increased during geologic time. Such an increase does not require a growth of the continents, however, in the broader sense of the term, but merely that a smaller fraction of the continent and its shelf should be submerged. (4) In tropical latitudes, on the other hand, the extent of the lands seems to have decreased, apparently by the growth of the ocean basins. South America and Africa are thought by many students to have been connected, and Africa was united with India via Madagascar, as is suggested in Fig. 9. The most radical cyclic as well as the most radical progressive changes in land distribution also seem to have taken place in tropical regions.[88]