there has been a decrease in the extent of land within the tropics. Gondwana Land is the greatest illustration of this. In the same way, on the numerous paleogeographic maps of North America, most paleogeographers have shown fairly extensive lands south of the latitude of the United States during most of the geologic epochs.[90]

(c) There is evidence that during geologic history the area of the lands in middle and high latitudes, as well as in low latitudes, has changed radically. An increase in such lands would cause the winters to grow colder. This would be partly because of the loss of heat by radiation into the cold dry air over the continents in winter, and partly because of increased reflection from snow and frost, which gather much more widely upon the land than upon the ocean. Furthermore, in winter when the continents are relatively cold, there is a strong tendency for winds to blow out from the continent toward the ocean. The larger the land the stronger this tendency. In Asia it gives rise to strong winter monsoons. The effect of such winds is illustrated by the way in which the westerlies prevent the Gulf Stream from warming the eastern United States in winter. The Gulf Stream warms northwestern Europe much more than the United States because, in Europe, the prevailing winds are onshore.

Another effect of an increase in the area of the lands in middle and high latitudes would be to interpose barriers to oceanic circulation and thus lower the temperature of polar regions. This would not mean glaciation in high latitudes, however, even when the lands were widespread as in the Mesozoic and early Tertiary. Students of glaciology are more and more thoroughly convinced

that glaciation depends on the availability of moisture even more than upon low temperature.

In conclusion it may be noted that each of the several climatic influences of increased land area in the high latitudes would tend to increase the contrasts between land and sea, between winter and summer, and between low latitudes and high. In other words, so far as the effect upon high latitudes themselves is concerned, an expansion of the lands there would tend in the same direction as a diminution in low latitudes. In so far as the general trend of geological evolution has been toward more land in high latitudes and less in low, it would help to produce a progressive increase in climatic diversity such as is faintly indicated in the rock strata. On the other hand, the oscillations in the distribution of the lands, of which geology affords so much evidence, must certainly have played an important part in producing the periodic changes of climate which the earth has undergone.

III. Throughout geological history there is abundant evidence that the process of contraction has led to marked differences not only in the distribution and area of the lands, but in their height. On the whole the lands have presumably increased in height since the Proterozoic, somewhat in proportion to the increased differentiation of continents and oceans.[91] If there has been such an increase, the contrast between the climate of ocean and land must have been accentuated, for highlands have a greater diurnal and seasonal range of temperature than do lowlands. The ocean has very little range of either sort. The large range at high altitudes is due chiefly to the small quantity of water vapor, for this declines

steadily with increased altitude. A diminution in the density of the other constituents of the air also decreases the blanketing effect of the atmosphere. In conformity with the great seasonal range in temperature at times when the lands stand high, the direction of the wind would be altered. When the lands are notably warmer than the oceans, the winds commonly flow from land to sea, and when the continents are much colder than the oceans, the direction is reversed. The monsoons of Asia are examples. Strong seasonal winds disturb the normal planetary circulation of the trade winds in low latitudes and of the westerlies in middle latitudes. They also interfere with the ocean currents set in motion by the planetary winds. The net result is to hinder the transfer of heat from low latitudes to high, and thus to increase the contrasts between the zones. Local as well as zonal contrasts are also intensified. The higher the land, the greater, relatively speaking, are the cloudiness and precipitation on seaward slopes, and the drier the interior. Indeed, most highlands are arid. Henry's[92] recent study of the vertical distribution of rainfall on mountain-sides indicates that a decrease sets in at about 3500 feet in the tropics and only a little higher in mid-latitudes.

In addition to the main effects upon atmospheric circulation and precipitation, each of the many upheavals of the lands must have been accompanied by many minor conditions which tended toward diversity. For example, the streams were rejuvenated, and instead of meandering perhaps over vast flood plains they intrenched their channels and in many cases dug deep gorges. The water table was lowered, soil was removed from considerable areas, the bare rock was exposed, and the type of dominant

vegetation altered in many places. An almost barren ridge may represent all that remains of what was once a vast forested flood plain. Thus, increased elevation of the land produces contrasted conditions of slope, vegetation, availability of ground water, exposure to wind and so forth, and these unite in diversifying climate. Where mountains are formed, strong contrasts are sure to occur. The windward slopes may be very rainy, while neighboring leeward slopes are parched by a dry foehn wind. At the same time the tops may be snow-covered. Increased local contrasts in climatic conditions are known to influence the intensity of cyclonic storms,[93] and these affect the climatic conditions of all middle and high latitudes, if not of the entire earth. The paths followed by cyclonic storms are also altered by increased contrast between land and water. When the continents are notably colder than the neighboring oceans, high atmospheric pressure develops on the lands and interferes with the passage of lows, which are therefore either deflected around the continent or forced to move slowly.

The distribution of lofty mountains has an even more striking climatic effect than the general uplift of a region. In Proterozoic times there was a great range in the Lake Superior region; in the late Devonian the Acadian mountains of New England and the Maritime Provinces of Canada possibly attained a height equal to the present Rockies. Subsequently, in the late Paleozoic a significant range stood where the Ouachitas now are. Accompanying the uplift of each of these ranges, and all others, the climate of the surrounding area, especially to leeward, must have been altered greatly. Many extensive salt deposits