The index, although immoveable per se, is by the alcohol drawn back, as in the ordinary minimum, and its indications are read off on the scale from the top of the index.

76. Mercurial Minima Thermometers desirable.—Alcohol does not expand equally for equal increments of heat, consequently errors are likely to exist in the scale indications unless the graduations are very accurately—not necessarily equally—made. On this account, as well as from the volatility of alcohol, and the intervention of gaseous partitions in the tube, a good and thoroughly reliable minimum thermometer was for a long time a desideratum. It was desirable to obtain a thermometer which should register the lowest temperature by mercury, the fluid in general use for meteorological thermometers. Several instruments have recently been invented to meet this requirement, which are suitable and satisfactory for land purposes, but one well adapted for use on board ship is still very much wanted.

For very low temperatures, alcohol thermometers will always be required; as mercury freezes at -40° F, and contracts very irregularly much before this point, while alcohol has never yet been frozen.

Fig. 57.

77. Negretti and Zambra’s Patent Mercurial Minimum Thermometer, represented by fig. 57, has a cylindrical bulb of large size, which, at first sight, might induce the idea that the instrument would not be sufficiently sensitive; but as length is given to the cylinder instead of increasing its diameter, it will be found as sensitive as a globular bulb of the same diameter, and much more so than an ordinary alcohol thermometer.

The reason for having the bulb large is to allow the internal diameter of the thermometer tube to be larger than that generally used for thermometrical purposes, so that a steel index, pointed at both ends, may move freely within when required.

The tube is blown, filled and regulated in the usual way, 60° of temperature being about half-way up the tube. A small cylindrical bulb is then formed at the upper end of the tube, and then is introduced a steel needle pointed at both ends, that in contact with the mercury being abrupt, the other more prolonged. The open extremity of the tube is now drawn out into a fine capillary tube, and the bulb of the instrument warmed so as to cause the mercury to fill the tube completely. When the mercury reaches the capillary tube, the flame of a blow-pipe is applied; the glass is dexterously melted, the superfluous part taken away, and the tube left hermetically closed. During this operation, the steel index has been embedded in the heated mercury. As the instrument cools, if held upright, the mercury will recede and expose the needle, which will then follow the descending column simply by its own gravity. In this condition the thermometer resembles Rutherford’s maximum, being a tube of mercury with a steel index floating on its surface; but it possesses these important advantages: it is quite free from air, so that the mercury can move with perfect freedom; and the index is pointed at both ends, to allow the mercury to pass, instead of being ground flat to prevent it.

Fig. 58.