In this sense the stimulus of the blood produces the contractions of the heart; and the substances we take into our stomach and bowels stimulate them to perform their necessary functions. The rays of light excite the retina into animal motion by their stimulus; at the same time that those rays of light themselves are physically converged to a focus by the inactive humours of the eye. The vibrations of the air stimulate the auditory nerve into animal action; while it is probable that the tympanum of the ear at the same time undergoes a mechanical vibration.

To render this circumstance more easy to be comprehended, motion may be defined to be a variation of figure; for the whole universe may be considered as one thing possessing a certain figure; the motions of any of its parts are a variation of this figure of the whole: this definition of motion will be further explained in Section [XIV. 2. 2]. on the production of ideas.

Now the motions of an organ of sense are a succession of configurations of that organ; these configurations succeed each other quicker or slower; and whatever configuration of this organ of sense, that is, whatever portion of the motion of it is, or has usually been, attended to, constitutes an idea. Hence the configuration is not to be considered as an effect of the motion of the organ, but rather as a part or temporary termination of it; and that, whether a pause succeeds it, or a new configuration immediately takes place. Thus when a succession of moving objects are presented to our view, the ideas of trumpets, horns, lords and ladies, trains and canopies, are configurations, that is, parts or links of the successive motions of the organ of vision.

These motions or configurations of the organs of sense differ from the sensorial motions to be described hereafter, as they appear to be simply contractions of the fibrous extremities of those organs, and in that respect exactly resemble the motions or contractions of the larger muscles, as appears from the following experiment. Place a circular piece of red silk about an inch in diameter on a sheet of white paper in a strong light, as in Plate I.—look for a minute on this area, or till the eye becomes somewhat fatigued, and then, gently closing your eyes, and shading them with your hand, a circular green area of the same apparent diameter becomes visible in the closed eye. This green area is the colour reverse to the red area, which had been previously inspected, as explained in the experiments on ocular spectra at the end of the work, and in Botanical Garden, P. 1. additional note, No. 1. Hence it appears, that a part of the retina, which had been fatigued by contraction in one direction, relieves itself by exerting the antagonist fibres, and producing a contraction in an opposite direction, as is common in the exertions of our muscles. Thus when we are tired with long action of our arms in one direction, as in holding a bridle on a journey, we occasionally throw them into an opposite position to relieve the fatigued muscles.

Mr. Locke has defined an idea to be "whatever is present to the mind;" but this would include the exertions of volition, and the sensations of pleasure and pain, as well as those operations of our system, which acquaint us with external objects; and is therefore too unlimited for our purpose. Mr. Lock seems to have fallen into a further error, by conceiving, that the mind could form a general or abstract idea by its own operation, which was the copy of no particular perception; as of a triangle in general, that was neither acute, obtuse, nor right angled. The ingenious Dr. Berkley and Mr. Hume have demonstrated, that such general ideas have no existence in nature, not even in the mind of their celebrated inventor. We shall therefore take for granted at present, that our recollection or imagination of external objects consists of a partial repetition of the perceptions, which were excited by those external objects, at the time we became acquainted with them; and that our reflex ideas of the operations of our minds are partial repetitions of those operations.

[II]. The following article evinces that the organ of vision consists of a fibrous part as well as of the nervous medulla, like other white muscles; and hence, as it resembles the muscular parts of the body in its structure, we may conclude, that it must resemble them in possessing a power of being excited into animal motion.—The subsequent experiments on the optic nerve, and on the colours remaining in the eye, are copied from a paper on ocular spectra published in the seventy-sixth volume of the Philos. Trans. by Dr. R. Darwin of Shrewsbury; which, as I shall have frequent occasion to refer to, is reprinted in this work, Sect. [XL]. The retina of an ox's eye was suspended in a glass of warm water, and forcibly torn in a few places; the edges of these parts appeared jagged and hairy, and did not contract and become smooth like simple mucus, when it is distended till it breaks; which evinced that it consisted of fibres. This fibrous construction became still more distinct to the light by adding some caustic alcali to the water; as the adhering mucus was first eroded, and the hair-like fibres remained floating in the vessel. Nor does the degree of transparency of the retina invalidate this evidence of its fibrous structure, since Leeuwenhoek has shewn, that the crystalline humour itself consists of fibres. Arc. Nat. V. I. 70.

Hence it appears, that as the muscles consist of larger fibres intermixed with a smaller quantity of nervous medulla, the organ of vision consists of a greater quantity of nervous medulla intermixed with smaller fibres. It is probable that the locomotive muscles of microscopic animals may have greater tenuity than these of the retina; and there is reason to conclude from analogy, that the other immediate organs of sense, as the portio mollis of the auditory nerve, and the rete mucosum of the skin, possess a similarity of structure with the retina, and a similar power of being excited into animal motion.

[III]. The subsequent articles shew, that neither mechanical impressions, nor chemical combinations of light, but that the animal activity of the retina constitutes vision.

[1]. Much has been conjectured by philosophers about the momentum of the rays of light; to subject this to experiment a very light horizontal balance was constructed by Mr. Michel, with about an inch square of thin leaf-copper suspended at each end of it, as described in Dr. Priestley's History of Light and Colours. The focus of a very large convex mirror was thrown by Dr. Powel, in his lectures on experimental philosophy, in my presence, on one wing of this delicate balance, and it receded from the light; thrown on the other wing, it approached towards the light, and this repeatedly; so that no sensible impulse could be observed, but what might well be ascribed to the ascent of heated air.