In these cases the retina is thrown into activity or sensation by the stimulus of external colours, at the same time that it continues the activity or sensation which forms the spectra; in the same manner as the prismatic colours, painted on a whirling top, are seen to mix together. When these colours of external objects are brighter than the direct spectrum which is thrown upon them, they change it into the reverse spectrum, like the admission of external light on a direct spectrum, as explained above. When they are darker than the direct spectrum, they mix with it, their weaker stimulus being inefficient to induce the reverse spectrum.
[3]. Variation of spectra in respect to number, and figure, and remission.
When we look long and attentively at any object, the eye cannot always be kept entirely motionless; hence, on inspecting a circular area of red silk placed on white paper, a lucid crescent or edge is seen to librate on one side or other of the red circle: for the exterior parts of the retina sometimes falling on the edge of the central silk, and sometimes on the white paper, are less fatigued with red light than the central part of the retina, which is constantly, exposed to it; and therefore, when they fall on the edge of the red silk, they perceive it more vividly. Afterwards, when the eye becomes fatigued, a green spectrum in the form of a crescent is seen to librate on one side or other of the central circle, as by the unsteadiness of the eye a part of the fatigued retina falls on the white paper; and as by the increasing fatigue of the eye the central part of the silk appears paler, the edge on which the unfatigued part of the retina occasionally falls will appear of a deeper red than the original silk, because it is compared with the pale internal part of it. M. de Buffon in making this experiment observed, that the red edge of the silk was not only deeper coloured than the original silk; but, on his retreating a little from it, it became oblong, and at length divided into two, which must have been owing to his observing it either before or behind the point of intersection of the two optic axises. Thus, if a pen is held up before a distant candle, when we look intensely at the pen two candles are seen behind it; when we look intensely at the candle two pens are seen. If the sight be unsteady at the time of beholding the sun, even though one eye only be used, many images of the sun will appear, or luminous lines, when the eye is closed. And as some parts of these will be more vivid than others, and some parts of them will be produced nearer the center of the eye than others, these will disappear sooner than the others; and hence the number and shape of these spectra of the sun will continually vary, as long as they exist. The cause of some being more vivid than others, is the unsteadiness of the eye of the beholder, so that some parts of the retina have been longer exposed to the sunbeams. That some parts of a complicated spectrum fade and return before other parts of it, the following experiment evinces. Draw three concentric circles; the external one an inch and a half in diameter, the middle one an inch, and the internal one half an inch; colour the external and internal areas blue, and the remaining one yellow, as in Fig. 4.; after having looked about a minute on the center of these circles, in a bright light, the spectrum of the external area appears first in the closed eye, then the middle area, and lastly the central one; and then the central one disappears, and the others in inverted order. If concentric circles of more colours are added, it produces the beautiful ever changing spectrum in Sect. [I]. Exp. 2.
From hence it would seem, that the center of the eye produces quicker remissions of spectra, owing perhaps to its greater sensibility; that is, to its more energetic exertions. These remissions of spectra bear some analogy to the tremors of the hands, and palpitations of the heart, of weak people: and perhaps a criterion of the strength of any muscle or nerve may be taken from the time it can be continued in exertion.
[4]. Variation of spectra in respect to brilliancy; the visibility of the circulation of the blood in the eye.
1. The meridian or evening light makes a difference in the colours of some spectra; for as the sun descends, the red rays, which are less refrangible by the convex atmosphere, abound in great quantity. Whence the spectrum of the light parts of a window at this time, or early in the morning, is red; and becomes blue either a little later or earlier; and white in the meridian day; and is also variable from the colour of the clouds or sky which are opposed to the window.
2. All these experiments are liable to be confounded, if they are made too soon after each other, as the remaining spectrum will mix with the new ones. This is a very troublesome circumstance to painters, who are obliged to look long upon the same colour; and in particular to those whose eyes, from natural debility, cannot long, continue the same kind of exertion. For the same reason, in making these experiments, the result becomes much varied if the eyes, after viewing any object, are removed on other objects for but an instant of time, before we close them to view the spectrum; for the light from the object, of which we had only a transient view, in the very time of closing our eyes acts as a stimulus on the fatigued retina; and for a time prevents the defined spectrum from appearing, or mixes its own spectrum with it. Whence, after the eyelids are closed, either a dark field, or some unexpected colours, are beheld for a few seconds, before the desired spectrum becomes distinctly visible.
3. The length of time taken up in viewing an object, of which we are to observe the spectrum, makes a great difference in the appearance of the spectrum, not only in its vivacity, but in its colour; as the direct spectrum of the central object, or of the circumjacent ones, and also the reverse spectra of both, with their various combinations, as well as the time of their duration in the eye, and of their remissions or alternations, depend upon the degree of fatigue the retina is subjected to. The Chevalier d'Arcy constructed a machine by which a coal of fire was whirled round in the dark, and found, that when a luminous body made a revolution in eight thirds of time, it presented to the eye a complete circle of fire; from whence he concludes, that the impression continues on the organ about the seventh part of a second. (Mem. de l'Acad. des Sc. 1765.) This, however, is only to be considered as the shortest time of the duration of these direct spectra; since in the fatigued eye both the direct and reverse spectra, with their intermissions, appear to take up many seconds of time, and seem very variable in proportion to the circumstances of fatigue or energy.
4. It sometimes happens, if the eyeballs have been rubbed hard with the fingers, that lucid sparks are seen in quick motion amidst the spectrum we are attending to. This is similar to the flashes of fire from a stroke on the eye in fighting, and is resembled by the warmth and glow, which appears upon the skin after friction, and is probably owing to an acceleration of the arterial blood into the vessels emptied by the previous pressure. By being accustomed to observe such small sensations in the eye, it is easy to see the circulation of the blood in this organ. I have attended to this frequently, when I have observed my eyes more than commonly sensible to other spectra. The circulation may be seen either in both eyes at a time, or only in one of them; for as a certain quantity of light is necessary to produce this curious phenomenon, if one hand be brought nearer the closed eyelids than the other, the circulation in that eye will for a time disappear. For the easier viewing the circulation, it is sometimes necessary to rub the eyes with a certain degree of force after they are closed, and to hold the breath rather longer than is agreeable, which, by accumulating more blood in the eye, facilitates the experiment; but in general it may be seen distinctly after having examined other spectra with your back to the light, till the eyes become weary; then having covered your closed eyelids for half a minute, till the spectrum is faded away which you were examining, turn your face to the light, and removing your hands from the eyelids, by and by again shade them a little, and the circulation becomes curiously distinct. The streams of blood are however generally seen to unite, which shews it to be the venous circulation, owing, I suppose, to the greater opacity of the colour of the blood in these vessels; for this venous circulation is also much more easily seen by the microscope in the tail of a tadpole.