The attractions of electricity or of magnetism do not apply philosophically to the illustration of the contraction of animal fibres, since the force of those attractions increases in some proportion inversely as the distance, but in muscular motion there appears no difference in velocity or strength during the beginning or end of the contraction, but what may be clearly ascribed to the varying mechanic advantage in the approximation of one bone to another. Nor can muscular motion be assimilated with greater plausibility to the attraction of cohesion or elasticity; for in bending a steel spring, as a small sword, a less force is required to bend it the first inch than the second; and the second than the third; the particles of steel on the convex side of the bent spring endeavouring to restore themselves more powerfully the further they are drawn from each other. See Botanic Garden, P. I. addit. Note XVIII.

I am aware that this may be explained another way, by supposing the elasticity of the spring to depend more on the compression of the particles on the concave side than on the extension of them on the convex side; and by supposing the elasticity of the elastic gum to depend more on the resistance to the lateral compression of its particles than to the longitudinal extension of them. Nevertheless in muscular contraction, as above observed, there appears no difference in the velocity or force of it at its commencement or at its termination; from whence we must conclude that animal contraction is governed by laws of its own, and not by those of mechanics, chemistry, magnetism, or electricity.

On these accounts I do not think the experiments conclusive, which were lately published by Galvani, Volta, and others, to shew a similitude between the spirit of animation, which contracts the muscular fibres, and the electric fluid. Since the electric fluid may act only as a more potent stimulus exciting the muscular fibres into action, and not by supplying them with a new quantity of the spirit of life. Thus in a recent hemiplegia I have frequently observed, when the patient yawned and stretched himself, that the paralytic limbs moved also, though they were totally disobedient to the will. And when he was electrified by passing shocks from the affected hand to the affected foot, a motion of the paralytic limbs was also produced. Now as in the act of yawning the muscles of the paralytic limbs were excited into action by the stimulus of the irksomeness of a continued posture, and not by any additional quantity of the spirit of life; so we may conclude, that the passage of the electric fluid, which produced a similar effect, acted only as a stimulus, and not by supplying any addition of sensorial power.

If nevertheless this theory should ever become established, a stimulus must be called an eductor of vital ether; which stimulus may consist of sensation or volition, as in the electric eel, as well as in the appulses of external bodies; and by drawing off the charges of vital fluid may occasion the contraction or motions of the muscular fibres, and organs of sense.

[2]. The immediate effect of the action of the spirit of animation or sensorial power on the fibrous parts of the body, whether it acts in the mode of irritation, sensation, volition, or association, is a contraction of the animal fibre, according to the second law of animal causation. Sect. [IV]. Thus the stimulus of the blood induces the contraction of the heart; the agreeable taste of a strawberry produces the contraction of the muscles of deglutition; the effort of the will contracts the muscles, which move the limbs in walking; and by association other muscles of the trunk are brought into contraction to preserve the balance of the body. The fibrous extremities of the organs of sense have been shewn, by the ocular spectra in Sect. [III]. to suffer similar contraction by each of the above modes of excitation; and by their configurations to constitute our ideas.

[3]. After animal fibres have for some time been excited into contraction, a relaxation succeeds, even though the exciting cause continues to act. In respect to the irritative motions this is exemplified in the peristaltic contractions of the bowels; which cease and are renewed alternately, though the stimulus of the aliment continues to be uniformly applied; in the sensitive motions, as in strangury, tenesmus, and parturition, the alternate contractions and relaxations of the muscles exist, though the stimulus is perpetual. In our voluntary exertions it is experienced, as no one can hang long by the hands, however vehemently he wills so to do; and in the associate motions the constant change of our attitudes evinces the necessity of relaxation to those muscles, which have been long in action.

This relaxation of a muscle after its contraction, even though the stimulus continues to be applied, appears to arise from the expenditure or diminution of the spirit of animation previously resident in the muscle, according to the second law of animal causation in Sect. [IV]. In those constitutions, which are termed weak, the spirit of animation becomes sooner exhausted, and tremulous motions are produced, as in the hands of infirm people, when they lift a cup to their mouths. This quicker exhaustion of the spirit of animation is probably owing to a less quantity of it residing in the acting fibres, which therefore more frequently require a supply from the nerves, which belong to them.

[4]. If the sensorial power continues to act, whether it acts in the mode of irritation, sensation, volition, or association, a new contraction of the animal fibre succeeds after a certain interval; which interval is of shorter continuance in weak people than in strong ones. This is exemplified in the shaking of the hands of weak people, when they attempt to write. In a manuscript epistle of one of my correspondents, which is written in a small hand, I observed from four to six zigzags in the perpendicular stroke of every letter, which shews that both the contractions of the fingers, and intervals between them, must have been performed in very short periods of time.

The times of contraction of the muscles of enfeebled people being less, and the intervals between those contractions being less also, accounts for the quick pulse in fevers with debility, and in dying animals. The shortness of the intervals between one contraction and another in weak constitutions, is probably owing to the general deficiency of the quantity of the spirit of animation, and that therefore there is a less quantity of it to be received at each interval of the activity of the fibres. Hence in repeated motions, as of the fingers in performing on the harpsichord, it would at first sight appear, that swiftness and strength were incompatible; nevertheless the single contraction of a muscle is performed with greater velocity as well as with greater force by vigorous constitutions, as in throwing a javelin.

There is however another circumstance, which may often contribute to cause the quickness of the pulse in nervous fevers, as in animals bleeding to death in the slaughter-house; which is the deficient quantity of blood; whence the heart is but half distended, and in consequence sooner contracts. See Sect. [XXXII. 2. 1].