The bones are fastened together at the movable joints by stout sheets or bands of connective tissue known as ligaments. These hold them in place very securely and as additional support the muscles which surround every joint help to prevent the bones from slipping out of place. At nearly all the joints of the body the combined action of ligaments and muscles is sufficient to guarantee the joint against dislocation; the shoulder joint, and to a less extent the hip joint, is more likely to suffer this accident. The reason is that in obtaining flexibility of movement security of attachment is somewhat lessened. If the ligaments at the shoulder were tight enough to prevent the joint from ever becoming dislocated they would bind it to a serious degree. Most of the ligaments are of inelastic connective tissue, but those that fasten the separate vertebræ of the spinal column together are elastic, allowing of the bending in every direction which makes our backs as flexible as they are. The only movable joints which are bound by other means than ligaments are the connections of the ribs with the breastbone. These are of cartilage, but the movement here is so slight that the cartilage yields enough to permit it.

This completes our account of the bony skeleton. We shall finish the description of the supporting framework by a word about what may be called the connective tissue skeleton. The bony skeleton serves to support the body as a whole and to permit the muscles to do their work; the individual organs and the cells which make them up are held in place by sheets and bands of connective tissue. These are coarse and strong when their purpose is to support a large and heavy organ like the stomach; they become finer and finer as the parts to be supported become smaller, and when the individual cells are reached the connective tissue which surrounds them is almost inconceivably delicate. So completely does connective tissue permeate the whole body that it has been said that if everything else could be dissolved away, leaving only this tissue in place, there would still remain a model of the body, complete to the last detail.

CHAPTER VII
MOTION

OUR account of the body has now reached the point where we can take up in detail the special activities of the different kinds of cells. The first to be considered is motion, both because it is the familiar sign of life, as pointed out in the first chapter, and because it has so much to do with everything that enters into life. There are probably no animals that live out their entire lives without making any active motions, although some parasites, like the tapeworm, are stationary most of the time. There are a number of different ways in which movements are brought about. The very simplest animals, which consist of nothing but a bit of protoplasm, move by causing the protoplasm to flow bodily in one direction or another, a projection of part of the protoplasm being balanced by withdrawal of an equal part on the opposite side, and the whole mass progresses in the direction of the first projection. Next beyond this simplest means comes motion by tiny threads of protoplasm which project beyond the surface of the cell and whip back and forth. The stroke of these threads or cilia, as they are called, is stronger in one direction than in the other, so the effect of their beating is to propel the cell of which they are part in one direction through the water; or if they are on a surface which is stationary they set up a current in the water itself. This latter is the means by which oysters and similar animals which are anchored to the rocks get their food supplies. In some one-celled animals there are only one or two large cilia at one end; these beat back and forth, propelling the animal much as a fish swims.

The commonest, as well as the most effective, means of making motions is by cells specially developed for that purpose. These are called muscle cells, and every highly organized animal depends on them for most if not all of the motions which take place in its body. In muscle cells the functional metabolism takes the form of forcible changes in shape of the cells by which bodily motions are brought about. A muscle cell might be described as a mechanical device for transforming the chemical energy of burning fuel into the energy of motion. We have something comparable in the automobile cylinder, where the energy obtained from the explosive burning of the air-gas mixture drives the piston and so propels the car. Of course the two devices are not even remotely alike in the actual way in which they operate; their resemblance is purely the general one of converting one type of energy (chemical) into another type (motion).

There are three kinds of muscle cells in our bodies. The simplest are those that are found in the wall of the stomach and intestines and other internal organs that are capable of movements; the next kind is found only in the heart; the third, and most complex, makes up the bulk of our muscular tissue; it is the muscle that moves the bones. The first kind, because it shows no particular markings when examined through the microscope, is usually called smooth muscle; the second kind is known as heart muscle; the third kind, because it moves the skeleton, is named skeletal muscle. We shall devote most of our attention to this third kind of muscle, because it is a much more efficient machine than the others, and also because it has to do with our general bodily movements instead of with motions of internal organs.