There are a few people whose blood lacks some of the necessary chemical substances to enable it to clot; such persons are known technically as “bleeders.” Even a slight injury in one of them will cause serious, or even fatal, hemorrhage, unless the escape of blood is stopped artificially, since it will not stop of itself. An interesting fact about this condition is that it runs in families; in other words it is hereditary.

In addition to all these constituents of the body fluids which are dissolved in them, there are in that part of the fluids confined to the blood vessels, which we call the blood, three kinds of structures floating; these we have next to describe briefly. The first of these are the red corpuscles. They give the blood its red color, although if looked at singly they appear yellowish rather than red. Red corpuscles are almost inconceivably tiny. They are red flexible disks, a little bit thinner in the middle than at the edges, about one three-thousandth of an inch in diameter. Some idea of the enormous numbers in the body can be gathered, when we say that a drop of blood the size of the head of a pin would contain four or five million of them. The red corpuscles are made up of a sort of framework of protein within which is inclosed a red coloring matter or pigment, known as hemoglobin. It is this pigment that gives the blood its color, and in some respects it is one of the most important of the nonliving substances in



Two white (colorless) corpuscles a appear. The remainder are red corpuscles sticking together, forming rouleaux. (From Martin’s “Human Body.”)

the body. This is because it is the means by which the cells obtain sufficient supplies of oxygen. As we have already seen, every cell is constantly drawing from the body fluids about it the oxygen which is required for carrying on its metabolism. The fluids in turn get oxygen from the blood. It is necessary, therefore, for the blood to convey abundant supplies. Oxygen will dissolve in water, as is proven by the fact that fish and other aquatic animals are able to get enough oxygen from the water in which they live to serve their needs; but it is not sufficiently soluble to supply the needs of an active body like that of man. It is necessary, therefore, to have a special additional means of conveying oxygen besides its simply dissolving in the blood. This additional means is furnished by the hemoglobin, which is an “oxygen-carrying” pigment. What this means is that the hemoglobin has the property of taking up oxygen chemically, whenever it is exposed to a region where there is oxygen in abundance, and of giving it up again whenever it passes through a region where oxygen is scarce. It is thus that oxygen is conveyed from the lungs to the active tissues of the body. We shall have more to say about this in the chapter devoted especially to the matter of the oxygen supply.

We said a moment ago that the red corpuscles consist of a protein framework inclosing hemoglobin. They are not living. They must, therefore, have been made by living cells and poured out into the blood stream. We might suppose that this was done once for all and that the same red corpuscles are floating in our blood now that started floating there when the blood was first formed; but, as a matter of fact, this is not the case. There is a continuous breaking down of red corpuscles which must be made good by a continuous manufacture of new ones. Most of the larger bones in our bodies have a sort of spongy framework by which the ends, where the joints are, are made stronger. Within the space of these frameworks is a kind of marrow, known as red marrow, because it has such a very abundant blood supply. It is in this red marrow that the manufacture of red corpuscles goes on. There are throughout the red marrow living cells which are constantly dividing and subdividing, forming more and more so-called daughter cells. Within these daughter cells hemoglobin is presently deposited; a little later they lose the nucleus and probably the remainder of the living protoplasm as well, leaving just the framework of nonliving protein with its contained store of hemoglobin. This is the finished red corpuscle, and it breaks loose from the red marrow and floats out into the blood stream. The rate of manufacture of red corpuscles is very rapid; undoubtedly millions of them are formed daily in the various red marrow regions of the body. The total number of red corpuscles does not increase correspondingly, because they are broken down at the same rate as they are formed. It is now believed that in the spleen, which is a large organ of the abdomen whose function has always been obscure, those red corpuscles which are destined for destruction are picked out of the blood and broken down. We commonly suppose that this fate overtakes corpuscles that are worn out and are no longer efficient oxygen carriers, but we do not know, as a matter of fact, that the corpuscles do lose their effectiveness in course of time, nor have we any idea how the spleen could select out of the millions in the blood those particular ones which are no longer useful.

What the spleen does to the corpuscle is to break it up so that the protein and the hemoglobin in it are set free in the blood stream. We do not know what becomes of the protein; probably it is taken up and utilized. We do know that the hemoglobin is decomposed in the liver. One constituent of hemoglobin, in fact the constituent which gives it its ability to carry oxygen, is the element iron. Iron is not particularly abundant in living things, and we find that the body is thrifty with regard to it. When the liver decomposes the hemoglobin, the iron is saved in some way which enables the blood to carry it back to the red marrow, where it can be used over again. There are also some portions of the hemoglobin which are valuable as food material; the remainder, which is of no further use, is discharged from the body as a part of the bile.