the nerve center in the brain stem, which acts to quicken the heart, and this keeps the rapid beat going until these products are gradually gotten rid of from the body. Another somewhat similar case is the prolonged rapid heartbeat following a violent emotion. The explanation of this we saw a couple of chapters ago in the outpouring of adrenalin that accompanies emotion. One property of adrenalin, as already noted, is to quicken the heart; so, as long as any adrenalin remains in the blood stream, the heartbeat will be faster than normal.

In the above paragraphs we have tried to make clear that the blood is kept in motion through the body by the work of the heart, and that the heart’s activity varies in accordance with the needs of the body; in muscular exercise there is a great increase in metabolism, which means a greatly increased demand both for food supplies and for oxygen. To meet this increased demand it is necessary that the blood circulate more abundantly, and in the automatic speeding up of the heart through the nervous system we have the means by which this is done. In the case of strong emotion, as already emphasized, the bodily reactions are such as put the body into the best possible condition for meeting the emergency. Evidently a quickened heartbeat, by insuring abundant supplies of oxygen and of foodstuffs, contributes to this end. The slowing of the heartbeat, when one lies down, is evidently helpful in enabling the heart itself to recover from any strains that may have been put upon it. The heart is a muscle, and like any other muscle carries on its functional metabolism, which means that it is oxidizing fuel materials and producing waste products. Since it is absolutely necessary that the heart go on beating regularly year in and year out for perhaps eighty or a hundred years, any relief from activity that it can get by slowing down during sleep is evidently an advantage. It has been calculated that the heart muscle really enjoys an “eight-hour day,” by which is meant that on the average the functional metabolism of contraction is going on in heart muscle only about one-third of the time, eight hours out of each twenty-four. During the active waking time the metabolism takes a larger percentage than that, but during sleep enough less to even up.

The heart empties itself into the large arteries; the left heart into the aorta, the right heart into the pulmonary artery. Both these arteries, as well as their subdivisions, are highly elastic. The very best quality of rubber tubing is not superior to our arteries as samples of elastic tubes. The blood, as we have already seen, is quite sticky, and the capillaries through which it must pass in its course around the body are microscopically tiny. The heart pumps the blood out of itself at the rate of four or five quarts a minute or more, according to whether it is working moderately or at high speed. To force this amount of the sticky blood through the tiny capillaries evidently requires very considerable force. As a matter of fact, the force is sufficient so that if it were applied to working a fountain it would force a jet to the height of nearly eight feet. Evidently pumping blood into elastic arteries with this force and against the resistance offered by the tiny capillaries causes the arteries themselves to be not only filled but overfilled, so that their walls are greatly stretched. This fact, that our arteries are elastic and are kept on the stretch by the pressure of the blood within them, is of the very greatest importance to the proper flow of blood and this in turn is so important to our well-being that some of our most serious chronic diseases are traceable to the loss of elasticity on the part of the arteries.