another sphincter similar to that which closes the opening between the esophagus and stomach. This sphincter is ordinarily closed tightly, relaxing occasionally to let a little food through into the small intestine. It is interesting to note, however, that the sphincter does not hold against some materials; for example, water that is drunk between meals passes rapidly from the stomach on into the small intestine. It is said that raw oysters, raw white of egg, and other materials of a similar consistency also pass the sphincter immediately. Most other kinds of food material cannot pass unless the sphincter actually relaxes.
Shortly after food begins to enter the stomach churning movements are set up. These consist of regular contractions of the smooth muscle beginning at about the middle of the stomach in the form of a ring and so causing a deep depression to form right around the stomach, which then travels along toward the sphincter at the outlet. This, of course, crowds the food up toward that end; but if the sphincter does not relax, the food instead of escaping simply squirts back through the space left in the middle of the ringlike construction and so is actively churned. A regular procession of these waves travels over this part of the stomach during the whole time that gastric digestion is going on. The outer half of the stomach, the side toward the esophagus, does not join in this churning motion. The walls here remain quiet, merely pressing upon the food to crowd it up into the part where the churning is going on as fast as room is made for it there. At intervals during this process the sphincter relaxes and a small mass of food is crowded through into the small intestine; then the sphincter closes again, preventing more from passing until the former mass has had time to be acted upon by the digestive juices in the intestine. The way in which this sphincter is controlled is one of the very interesting facts of physiology, but before describing it we shall have to say something about actual gastric digestion.
The juice which the glands in the stomach wall secrete is called gastric juice. This contains three important constituents, first of which is hydrochloric acid. From the standpoint of chemistry it is a very interesting thing that the gastric glands should he able to manufacture a mineral acid like hydrochloric acid. That they do so, however, is proven by the facts of digestion in everybody. In addition to hydrochloric acid gastric juice contains two enzymes; the first is pepsin, which begins the digestion of protein foods, although it does not carry it through to completion. The other constituent is the enzyme rennin, which clots milk; this property appears to be useful in that clotted milk will not pass the sphincter into the small intestine as quickly as it would if it were liquid, and so the digestive processes can go on in milk after clotting just as it goes on in any other of our foods. Since milk is the chief, and in many cases the only, food of the young it is of course very important that its digestion should be very efficiently carried on. As the food is churned by the stomach muscles, it becomes mixed with gastric juice. Any milk that is present will be clotted and any protein will begin to be digested. The food will also be mixed with hydrochloric acid. It happens that the salivary enzyme, ptyalin, will not act in the presence of an acid, so that as soon as any of the food in the stomach comes in contact with hydrochloric acid of the gastric juice, the digestion of starch by ptyalin stops. Since gastric juice is mixed only with that part of the food which is being churned, the other portion, that in the part of the stomach toward the esophagus, goes right on undergoing salivary digestion. So, contrary to the old idea that salivary digestion is unimportant because there is not time enough during the chewing and swallowing of the food for it to go on effectively, we now know that the latter parts of the meal particularly may be very thoroughly acted upon by ptyalin before the action is stopped through the contact of this part of the food with the acid of the gastric juice.
The sphincter between the stomach and small intestine is operated by hydrochloric acid, making up a remarkably ingenious arrangement for securing the emptying of the stomach as fast as the food is ready to be passed on into the small intestine. In order that gastric digestion may have full opportunity, it is necessary that the food should be thoroughly mixed with the gastric juice. As soon as this has happened, however, it is proper that the food should be passed along to be acted on by the rest of the digestive juices. Until that part of the food which is next to the outlet sphincter is thoroughly mixed with gastric juice there will be no surplus of hydrochloric acid by which to operate the sphincter, but as soon as the mixing is complete there will be a surplus. We have here a simple case of stimulation by a chemical substance; the mere contact of the acid with the part of the sphincter which fronts on the stomach is sufficient to stimulate the smooth muscles in it to relax, and, of course, as soon as relaxation occurs, the pressure of the churning movements upon the food will crowd that part of it which is nearest to the sphincter through into the small intestine.
Now we encounter the second part of the action which is just as interesting as the first part. The small intestine is a rather narrow tube; its cavity is not much more than three-quarters of an inch or so in diameter. If the outlet sphincter from the stomach were to stay relaxed after it once let go, the rapid pressing of the food from the stomach would fill the small intestine quickly to a distance of several feet. It happens, however, that the next of the digestive juices to act upon the food are the pancreatic juice and bile, which are secreted respectively by the pancreas and liver, and are poured into the small intestine by ducts from these organs just a few inches beyond the outlet sphincter from the stomach. In order for these juices to mix well with the food it is important that only a little food come into the small intestine at a time. Otherwise a large part of it would pass the opening of these ducts so quickly that there would be no chance for it to become mixed with the juice from them. What actually happens is that the sphincter relaxes under the stimulus of surplus hydrochloric acid and then as soon as a little food has passed through closes again. The closing as well as the opening is operated by hydrochloric acid, but there is this difference: the opening is the result of the stimulation of acid upon the stomach side of the sphincter; when the same acid comes in contact with the intestinal side of the sphincter, its presence there causes the sphincter to contract. Of course, this means that whenever any food passes out from the stomach into the small intestine the sphincter is stimulated by acid simultaneously from both sides, but under that condition the stimulus which causes the sphincter to contract is more potent than that which causes it to relax, so that whenever there is acid on both sides the sphincter will be shut. The only way in which it can be opened to allow more food to pass out is to get rid of the acid on the intestinal side. This is fairly quickly accomplished, because both the pancreatic juice and bile are strongly alkaline liquids, so that as fast as they mix with the food they tend to neutralize the acid; the result is, of course, that by the time these digestive juices have impregnated the food mass thoroughly and so have accomplished their purpose, the stimulus which keeps the sphincter closed has disappeared and there is left only the stimulus to open it, due to the presence of acid in the stomach. As soon as this condition is reached, the sphincter will open again, another mass of food will pass through bringing its acid with it, which, of course, closes the sphincter promptly, and so the whole story goes on again. This action has been described in detail because it is one of the very best examples we have of the remarkably ingenious arrangements by which the complex bodily functions are carried on automatically.
From what we have just said it is evident that the proper emptying of the stomach and, therefore, the proper carrying on of the whole process of digestion, depends upon the formation and outpouring of ample supplies of acid-containing gastric juice. A failure of gastric secretion is bound to be followed by a failure of the stomach to empty itself. Instead of going on to the small intestine where digestion is completed and the digestion products passed on to the blood stream to be used by the body, the food mass lies inert in the stomach. After a few hours, if not immediately, the acute symptoms of indigestion are certain to develop. We are describing not a theoretical possibility but an actual happening in the life of thousands of people, sometimes almost daily. Indigestion is one of the great causes of misery and of impaired efficiency throughout the civilized world. It is said that Napoleon lost the Battle of Waterloo on account of an acute indigestion which befell him on the morning of the crucial day.
There are several causes of indigestion. Among them should be mentioned food poisoning; that is, the inadvertent taking of some material which instead of being a food proves to be actively poisonous. A second type about which we shall have something to say presently is the result of poisoning by substances which are products of the putrefaction of the intestinal contents. A third type, and the one in which we are particularly interested at this moment, is the one which results from the failure of gastric juice to be properly secreted. A fourth occasional cause of indigestion, which should be mentioned in passing, is that which results from eyestrain, and is avoided by properly fitted glasses. There is comparatively little food poisoning; most persons who are susceptible to poisoning from particular kinds of foods find it out promptly and learn to avoid the article which poisons them. A good deal of indigestion is the direct result of intestinal sluggishness; this usually comes on gradually enough to give warning of its approach. Sharp attacks for which there seems to be no justification are nearly always the result of the failure of gastric secretion. Because of the practical importance of this topic a very large amount of study has been devoted to it, and its story makes one of the very fascinating chapters of physiology.
Our space permits us to touch on it only very lightly. It begins with the time back in the middle of the eighteenth century when a couple of Italian investigators fed sponges inside perforated metal capsules to birds and animals and after recovering and squeezing the sponges demonstrated that the juice which had been soaked up would dissolve meat. The scene then shifts from Italy in the middle of the eighteenth century to our own country at the close of the first quarter of the nineteenth, when a French-Canadian lad, by the name of Alexis St. Martin, was brought in to the frontier army post on Mackinac Island with a gaping gunshot wound in his side. The victim of this accident recovered, but meanwhile a permanent opening into his stomach was left. The army doctor on duty at that post, William Beaumont by name, perceiving the unique opportunity for the study of digestion that was in his hands, employed the young man in his family and for many years studied the digestive process as it went on in his stomach. Next we turn to Russia, where an eminent physiologist, who was still living at last reports, demonstrated by making artificially an opening into the stomach of animals, similar to the one which was made by accident in the case of St. Martin, that the secretion of gastric juice is under the control of the nervous system and, furthermore, that it is under the control of that part of the nervous system which we have already learned regulates the functioning of smooth muscles and glands. Our present knowledge of the nervous system would lead us to expect nothing else, but at the time when these discoveries were made much less was known than now about how the glands, as well as the smooth muscles, are controlled. This Russian investigator showed that it is not necessary for food to enter the stomach in order for gastric juice to be secreted. The enjoyment that accompanies the taking of food into the mouth and so getting its taste and flavor is sufficient to arouse nervous disturbances which excite the gastric glands to activity. On the other hand, unfavorable emotions such as anger, fright, or worry, prevent the discharge of these nervous disturbances and so the glands remain inactive. Hand in hand with this, as we saw in Chapter XII, there will be a complete absence of muscular activity in the stomach; not only does the food fail to be churned, but gastric juice fails to be poured out. No digestion goes on in the stomach nor is the food passed on into the small intestine to be digested there. We can expect nothing else than that indigestion will come on. It appears that in human beings, with their high nervous organization, simple weariness may suffice to hinder the outpouring of the nervous disturbances upon which gastric secretion depends, so that one may not be worried at mealtime, but may be simply overtired and still fail of digesting the food. Fortunately we have means of avoiding this; it has been shown that meat extracts have a definite chemical effect upon the gastric glands, arousing them directly to activity. A hot, well-flavored soup at the beginning of a meal is a great aid to digestion, both because it tends to arouse us to active enjoyment of the meal and also because of the chemical influence it exerts directly upon our gastric glands. Cheerful conversation at table is an aid to digestion, because it contributes to our enjoyment of our food. Heated or angry discussion is to be avoided because of the danger that unfavorable emotional disturbances may be aroused, hampering or even putting a stop to the digestive activities.
We have here a powerful argument in favor of good cookery; some may be inclined to think that food is food and that one kind is about as nourishing as another. Not only theoretically, but in practice, food that is attractive both in appearance and in flavor benefits the body more than unattractive and badly cooked food. Of course, we must recognize that no statement of this sort has absolutely general application. The old proverb which says that “hunger is the best sauce” continues true. Hard-working manual laborers and actively playing children enjoy and digest food that is indifferently attractive. Brain workers and people of moderate health are better for an attractively prepared dietary.