Great Circle Sailing—the Chronometer

In Tuesday's Lecture of this week, I explained how a Great Circle track was laid down on one of the Great Circle Sailing Charts which are prepared by the Hydrographic Office.

Supposing, however, you do not have these charts on hand. There is an easy way to construct a great circle track yourself. Turn to Art. 194, page 82, in Bowditch. Here is a table with an explanation as to how to use it. Take, for instance, the same two points between which you just drew a line on the great circle track. Find the center of this line and the latitude of that point. At this point draw a line perpendicular to the course to be sailed, the other end of which must intersect the corresponding parallel of latitude given in the table. With this point as the center of a circle, sweep an arc which will intersect the point left and the point sought. This arc will be the great circle track to follow.

To find the courses to be sailed, get the difference between the course at starting and that at the middle of the circle, and find how many quarter points are contained in it. Now divide the distance from the starting point to the middle of the circle by the number of quarter points. That will give the number of miles to sail on each quarter point course. See this illustration:

Difference between ENE and E = 2 pts. = 8 quarter points. Say distance is 1600 miles measured by dividers or secured by Mercator Sailing Method. Divide 1600 by 8 = 200. Every 200 miles you should change your course ¼ point East.

The Chronometer

The chronometer is nothing more than a very finely regulated clock. With it we ascertain Greenwich Mean Time, i.e., the mean time at Greenwich Observatory, England. Just what the words "Greenwich Mean Time" signify, will be explained in more detail later on. What you should remember here is that practically every method of finding your exact position at sea is dependent upon knowing Greenwich Mean Time, and the only way to find it is by means of the chronometer.

It is essential to keep the chronometer as quiet as possible. For that reason, when you take an observation you will probably note the time by your watch. Just before taking the observation, you will compare your watch with the chronometer to notice the exact difference between the two. When you take your observation, note the watch time, apply the difference between the chronometer and watch, and the result will be the CT.

For instance, suppose the chronometer read 3h 25m 10s, and your watch, at the same instant, read 1h 10m 5s. C-W would be: