North declinations, i.e., declinations north of the equinoctial are always marked, +; those south of the equinoctial, -. For instance, in the Nautical Almanac, you will never see a declination of the sun or other celestial body marked, N 18° 28' 30". It will always be marked +18° 28' 30" and a south declination will be marked -18° 28' 30". Another fact to remember is that Declination on the celestial sphere corresponds to latitude on the earth. If, for instance, the Sun's declination is +18° 28' 30" at noon, Greenwich, then at that instant, i.e., noon at Greenwich, the sun will be directly overhead a point on earth which is in latitude N 18° 28' 30".

The Polar Distance of any point is its distance in arc from either pole. It must, therefore, equal 90° minus the declination, if measured from the pole of the same name as the declination or 90° plus the declination if measured from the pole of the opposite name.

P M is the polar distance of M from P, or P B the polar distance of B from P.

The true altitude of a celestial body is its angular height from the true horizon.

The zenith distance of any point or celestial body is its angular distance from the zenith of the observer.

The Ecliptic is the great circle representing the path in which the sun appears to move in the celestial sphere. As a matter of fact, you know that the earth moves around the sun, but as you observe the sun from some spot on the earth, it appears to move around the earth. This apparent track is called the Ecliptic as stated before, and in the illustration the Ecliptic is represented by the curved line, C V T. The plane of the Ecliptic is inclined to that of the Equinoctial at an angle of 23° 27½', and this inclination is called the obliquity of the Ecliptic.

The Equinoxes are those points at which the Ecliptic and Equinoctial intersect, and when the sun occupies either of these two positions, the days and nights are of equal length. The Vernal Equinox is that one which the sun passes through or intersects in going from S to N declination, and the Autumnal Equinox that which it passes through or intersects in going from N to S declination. The Vernal Equinox (V in the illustration) is also designated as the First Point of Aries which is of use in reckoning star time and will be mentioned in more detail later.

The Solstitial Points, or Solstices, are points of the Ecliptic at a distance of 90° from the Equinoxes, at which the sun attains its highest declination in each hemisphere. They are called the Summer and Winter Solstice according to the season in which the sun appears to pass these points in its path.

To sum up: The way to find any point on the earth is to find the distance of this point N or S of the equator (i.e., its Latitude) and its distance E or W of the meridian at Greenwich (i.e., its longitude). In the celestial sphere, the way to find the location of a point or celestial body such as the sun is to find its declination (i.e., distance in arc N or S of the equator) and its hour angle. By hour angle, I mean the distance in time from your meridian to the meridian of the point or celestial body in question.

Assign for Night reading, Arts, in Bowditch: 270-271-272-273-274-275-277-278-279-280-282-283-284.