Etc.


FRIDAY LECTURE

The Nautical Almanac

For the last two days we have been discussing Time - sun time or solar time and star time or sidereal time. Now let us examine the Nautical Almanac to see how that time is registered and how we read the various kinds of time for any instant of the day or night. Before starting in, put a large cross on pages 4 and 5. For any calculations you are going to make, these pages are unnecessary and they are liable to lead to confusion.

Sun time of the mean sun at Greenwich is given for every minute of the day in the year 1919 in the pages from 6 to 30. This is indicated by the column to the left headed G.M.T. Turn to page 6 under Wednesday, Jan. 1st. You can see that the even hours are given from 0 to 24. Remember that these are expressed in astronomical time, so that if you had Jan. 2nd - 10 hours A.M., you would not look in the column under Jan. 2nd but under the column for Jan. 1st, 22 hours, since 10 A.M. Jan. 2nd is 22 o'clock Jan. 1st, and no reading is used in this Almanac except a reading expressed in astronomical time. Now at the bottom of the column under Jan. 1st you see the letters H.D. That stands for "hourly difference" and represents the amount to be added or subtracted for an odd hour from the nearest even hour. In this instance it is .2. You note that even hours 2, 4, 6, etc., are given. To find an odd hour during this astronomical day, subtract .2 from the preceding even hour. For any fraction of an hour you simply take the corresponding fraction of the H.D. and subtract it from the preceding even hour. For instance, the declination for Jan. 1st - 12 hours would be 23° 1.8' or 23° 1' 48", 13 hours would be 23° 1.6' or 23° 1' 36", 12½ hours would be 23° 1.7' or 23° 1' 42", and 13½ hours would be 23° 1.5' or 23° 1' 30".

Now to the right of the hours you note there is given the corresponding amount of Declination and the Equation of Time. Before going further, let us review a few facts about Declination. The declination of a celestial body is its angular distance N or S of the celestial equator or equinoctial. Now get clearly in your mind how we measure the angular distance from the celestial equator of any heavenly body. It is measured by the angle one of whose sides is an imaginary line drawn to the center of the earth and the other of whose sides is an imaginary line passing from the center of the earth into the celestial sphere through the center of the heavenly body whose declination you desire. Now as you stand on any part of the earth, you are standing at right angles to the earth itself. Hence if this imaginary line passed through you it would intersect the celestial sphere at your zenith, i.e., the point in the celestial sphere which is directly above you. Now suppose you happen to be standing at a certain point on the earth and suppose that point was in 15° N latitude. And suppose at noon the center of the sun was directly over you, i.e., the center of the sun and your zenith were one and the same point. Then the declination of the sun at that moment would be 15° N. In other words, your angular distance from the earth's equator (which is another way of expressing your latitude) would be precisely the same as the angular distance of the center of the sun from the celestial equator. Suppose you were standing directly on the equator and the center of the sun was directly over you, then the declination of the sun would be 0°. Now if the axis of the earth were always perpendicular to the plane of the sun's orbit, then the sun would always be immediately over the equator and the sun's declination would always be 0°. But you know that the axis of the earth is inclined to the plane of the sun's orbit. As the earth, then, revolves around the sun, the amount of the declination increases and then decreases according to the location of the earth at any one time with relation to the sun. On March 21st and Sept. 23rd, 1919, the sun is directly over the equator and the declination is 0°. From March 21st to June 21st the sun is coming North and the declination is increasing until on June 21st - 12 hours - it reaches its highest declination. From then on the sun starts to travel South, crosses the equator on Sept. 23d and reaches its highest declination in South latitude on Dec. 22nd, when it starts to come North again. This explains easily the length of days. When the sun is in North latitude, it is nearer our zenith, i.e., higher in the heavens. It can, therefore, be seen for a longer time during the 24 hours that it takes the earth to revolve on its axis. Hence, when the sun reaches its highest declination in North latitude - June 21st - i.e., when it is farthest North from the equator and nearest our zenith (which is in 40° N latitude) it can be seen for the longest length of time. In other words, that day is the longest of the year. For the same reason, Dec. 22nd, when the sun reaches its highest declination in South latitude, i.e., when it is farthest away to the South, is the shortest day in the year for us; for on that day, the sun being farthest away from our zenith and hence lowest down toward the horizon, can be seen for the shortest length of time.

Put in your Note-Book:

North Declination is expressed +.
South Declination is expressed - .

Now turn to page 6 of the Nautical Almanac. You will see opposite Jan. 1st 0h, a declination of - 23° 4.2'. Every calculation in this Almanac is based on time at Greenwich, i.e., G.M.T. So at 0h Jan. 1st at Greenwich - that is at noon - the Sun's declination is S 23° 4.2'.