2

Now in the third column of the above table it is seen that (ι1 + ι2)/2 has the values ·39, ·41, ·43 for 2, 4, and 8 volts respectively. The numbers are thus in fairly good agreement. Similar results were obtained when a brass plate was substituted for the upper electrode shown in the figure. Taking into consideration that the magnitude of ne is independent of the strength of the magnetic field above a certain small value, and the good agreement of the numbers obtained with variation of voltage, I think that there can be no doubt that the positive charge communicated to the upper electrode was carried by the α particles. This positive charge was not small, for using a weight of ·48 mgrs. radium bromide spread in a thin foil over an area of about 20 sq. cms., the charge communicated by the particles corresponded to a current 8·8 × 10-13 amperes, and, with the Dolezalek electrometer employed, it was necessary to add a capacity of ·0024 microfarads to the electrometer system.

In these experiments, the film of radium bromide was so thin, that only a very small percentage of the α particles was stopped by the radium itself. Assuming that each α particle carries the same charge as an ion, viz. 1·1 × 10-19 coulombs, and remembering that half of the α particles are absorbed in the lower plate, the total number N of α particles expelled per second from one gram of radium bromide (at its minimum activity) can be deduced. In two separate experiments where the amount of radium used was ·194 and ·484 mgrs. respectively, the values of N were in close agreement and equal to 3·6 × 1010. Now it will be shown later that in radium there are three other products in radio-active equilibrium, each of which probably gives out the same number of α particles as radium itself. If this is the case, the total number of α particles expelled per second from 1 gram of radium bromide in radio-active equilibrium is 4N or 1·44 × 1011. Assuming the composition of radium bromide as RaBr2, the number per second per gram of radium is 2·5 × 1010. This number will be found to be in very good agreement with that deduced from indirect data ([chapter XIII].). The value of N is of great importance in determining the magnitude of various quantities in radio-active calculations.

94. Mass and energy of the α particle. It has been pointed out that the α rays from radium and polonium are analogous to the Canal rays of Goldstein, for both carry a positive charge and are difficult to deflect by a magnetic field. The experiments of Wien have shown that the velocity of projection of the canal rays varies with the gas in the tube and the intensity of the electric field applied, but it is generally about ⅒ of the velocity of the α particle from radium. The value of e/m is also variable, depending upon the gas in the tube.

It has been shown that for the α rays of radium

e

V = 2·5 × 109 and ------- = 6 × 103.

m

Now the value of e/m for the hydrogen atom, liberated in the electrolysis of water, is 104. Assuming the charge carried by the α particle to be the same as that carried by the hydrogen atom, the mass of the α particle is about twice that of the hydrogen atom. Taking into consideration the uncertainty attaching to the experimental value of e/m for the α particle, if the α particle consists of any known kind of matter, this result indicates that it consists either of projected helium or hydrogen. Further evidence on this important question is given in section 260.

The α rays from all the radio-active substances and their products, such as the radio-active emanations and the matter causing excited activity, possess the same general properties and do not vary very much in penetrating power. It is thus probable that in all cases the α rays from the different radio-active substances consist of positively charged bodies projected with great velocity. Since the rays from radium are made up in part of α rays from the emanation stored in the radium, and from the excited activity which it produces, the α rays from each of these products must consist of positively charged bodies; for it has been shown that all the α rays from radium are deviated in a strong magnetic field.