Not only are scintillations produced by radium, actinium, and polonium, but also by the emanations and other radio-active products which emit α rays. In addition, F. H. Glew[[154]] has found that they can be observed from the metal uranium, thorium compounds and various varieties of pitchblende. In order to show the scintillations produced by pitchblende, a flat surface was ground, and a transparent screen, whose lower surface was coated with zinc sulphide, placed upon it. Glew has designed a modified and very simple form of spinthariscope. A transparent screen, coated on one side with a thin layer of zinc sulphide, is placed in contact with the active material, and the scintillations observed by a lens in the usual way.

Since there is no absorption in the air, the luminosity is a maximum. The relative transparency of different substances placed between the active material and the screen may, in this way, be directly studied.

The production of scintillations appears to be a general property of the α rays from all radio-active substances. The scintillations are best shown with a zinc sulphide screen; but are also observed with willemite (zinc silicate), powdered diamond, and potassium platinocyanide (Glew, loc. cit.). If a screen of barium platinocyanide is exposed to the α rays from radium, the scintillations are difficult to observe, and the luminosity is far more persistent than for a zinc sulphide screen exposed under the same conditions. The duration of the phosphorescence in this case probably accounts for the absence of visible scintillations.

There can be no doubt that the scintillations result from the continuous bombardment of the sensitive screen by the α particles. Each of these particles moves with enormous velocity, and has a considerable energy of motion. On account of the ease with which these particles are stopped, most of this energy is given up at the surface of the screen, and a portion of the energy is in some way transformed into light. Zinc sulphide is very sensitive to mechanical shocks. Luminosity is observed if a penknife is drawn across the screen, or if a current of air is directed on to the screen. The disturbance effected by the impact of the α particle extends over a distance very large compared with the size of the impinging particle, so that the spots of light produced have an appreciable area. Recently Becquerel[[155]] has made an examination of the scintillations produced by different substances, and has concluded that the scintillations are due to irregular cleavages in the crystals composing the screen, produced by the action of the α rays. Scintillations can be mechanically produced by crushing a crystal. Tommasina[[156]] found that a zinc sulphide screen removed from the action of the radium rays for several days, showed the scintillations again when an electrified rod was brought near it.

The number of scintillations produced in zinc sulphide depends upon the presence of a slight amount of impurity and on its crystalline state. It can be shown that even with the most sensitive zinc sulphide screens, the number of scintillations is probably only a small fraction of the total number of α particles which fall upon it. It would appear that the crystals are in some way altered by the bombardment of the α particles, and that some of the crystals occasionally break up with emission of light[[157]].

Although the scintillations from a particle of pure radium bromide are very numerous, they are not too numerous to be counted. Close to the radium, the luminosity is very bright, but by using a high power microscope the luminosity can still be shown to consist of scintillations. Since the number of scintillations probably bears no close relation to the number of α particles emitted, a determination of the number of scintillations would have no special physical significance. The relation between the number of α particles and the number of scintillations would probably be variable, depending greatly on the exact chemical composition of the sensitive substance and also upon its crystalline state.

97. Absorption of the α rays by matter. The α rays from the different radio-active substances can be distinguished from one another by the relative amounts of their absorption by gases or by thin screens of solid substances. When examined under the same conditions, the α rays from the active substances can be arranged in a definite order with reference to the amount of absorption in a given thickness of matter.

In order to test the amount of absorption of the α rays for different thicknesses of matter, an apparatus similar to that shown in [Fig. 17], p. 98, was employed[[158]]. A thin layer of the active material was spread uniformly over an area of about 30 sq. cms., and the saturation current observed between two plates 3·5 cms. apart. With a thin layer[[159]] of active material, the ionization between the plates is due almost entirely to the α rays. The ionization due to the β and γ rays is generally less than 1% of the total.

The following table shows the variation of the saturation current between the plates due to the α rays from radium and polonium, with successive layers of aluminium foil interposed, each ·00034 cm. in thickness. In order to get rid of the ionization due to the β rays from radium, the radium chloride employed was dissolved in water and evaporated. This renders the active compound, for the time, nearly free from β rays.

The initial current with 1 layer of aluminium over the active material is taken as 100. It will be observed that the current due