In these experiments about 0·1 gram of pure radium chloride was obtained by successive fractionations. The difficulty involved in preparing a quantity of pure radium chloride large enough to test the atomic weight may be gauged from the fact that only a few centigrams of fairly pure radium, or a few decigrams of less concentrated material, are obtained from the treatment of about 2 tons of the mineral from which it is derived.
Runge and Precht[[25]] have examined the spectrum of radium in a magnetic field, and have shown the existence of series analogous to those observed for calcium, barium, and strontium. These series are connected with the atomic weights of the elements in question, and Runge and Precht have calculated by these means that the atomic weight of radium should be 258—a number considerably greater than the number 225 obtained by Mme Curie by means of chemical analysis. Marshall Watts[[26]], on the other hand, using another relation between the lines of the spectrum, deduced the value obtained by Mme Curie. Runge[[27]] has criticised the method of deduction employed by Marshall Watts on the ground that the lines used for comparison in the different spectra were not homologous. Considering that the number found by Mme Curie agrees with that required by the periodic system, it is advisable in the present state of our knowledge to accept the experimental number rather than the one deduced by Runge and Precht from spectroscopic evidence.
There is no doubt that radium is a new element possessing remarkable physical properties. The detection and separation of this substance, existing in such minute proportions in pitchblende, has been due entirely to the characteristic property we are considering, and is the first notable triumph of the study of radio-activity. As we shall see later, the property of radio-activity can be used, not only as a means of chemical research, but also as an extraordinarily delicate method of detecting chemical changes of a very special kind.
15. Radiations from radium. On account of its enormous activity, the radiations from radium are very intense: a screen of zinc sulphide, brought near a few centigrams of radium bromide, is lighted up quite brightly in a dark room, while brilliant fluorescence is produced on a screen of platino-barium cyanide. An electroscope brought near the radium salt is discharged almost instantly, while a photographic plate is immediately affected. At a distance of one metre, a day’s exposure to the radium rays would produce a strong impression. The radiations from radium are analogous to those of uranium, and consist of three types of rays: easily absorbed, penetrating, and very penetrating. Radium also gives rise to an emanation similar to that of thorium, but with a very much slower rate of decay. The radium emanation retains its activity for several weeks, while that of thorium lasts only a few minutes. The emanation obtained from a few centigrams of radium illuminates a screen of zinc sulphide with great brilliancy. The very penetrating rays of radium are able to light up an X ray screen in a dark room, after passage through several centimetres of lead and several inches of iron.
As in the case of uranium or thorium, the photographic action is mainly due to the penetrating or cathodic rays. The radiographs obtained with radium are very similar to those obtained with X rays, but lack the sharpness and detail of the latter. The rays are unequally absorbed by different kinds of matter, the absorption varying approximately as the density. In photographs of the hand the bones do not stand out as in X ray photographs.
Curie and Laborde have shown that the compounds of radium possess the remarkable property of always keeping their temperature several degrees above the temperature of the surrounding air. Each gram of radium radiates an amount of energy corresponding to 100 gram-calories per hour. This and other properties of radium are discussed in detail in chapters [V] and [XII].
16. Compounds of radium. When first prepared in the solid state, all the salts of radium—the chloride, bromide, acetate, sulphate, and carbonate—are very similar in appearance to the corresponding salts of barium, but in time they gradually become coloured. In chemical properties the salts of radium are practically the same as those of barium, with the exception that the chloride and bromide of radium are less soluble in water than the corresponding salts of barium. All the salts of radium are naturally phosphorescent. The phosphorescence of impure radium preparations is in some cases very marked.
All the radium salts possess the property of causing rapid colorations of the glass vessel which contains them. For feebly active material the colour is usually violet, for more active material a yellowish-brown, and finally black.
17. Actinium. The discovery of radium in pitchblende gave a great impetus to the chemical examination of uranium residues, and a systematic search early led to the detection of several new radio-active bodies. Although these show distinctive radio-active properties, so far none of them have been purified sufficiently to give a definite spectrum as in the case of radium. One of the most interesting and important of these substances was discovered by Debierne[[28]] while working up the uranium residues, obtained by M. and Mme Curie from the Austrian government, and was called by him actinium. This active substance is precipitated with the iron group, and appears to be very closely allied in chemical properties to thorium, though it is many thousand times more active. It is very difficult to separate from thorium and the rare earths. Debierne has made use of the following methods for partial separation:
(1) Precipitation in hot solutions, slightly acidulated with hydrochloric acid, by excess of hyposulphite of soda. The active matter is present almost entirely in the precipitate.