q₀ λ

This result was tested as follows: a quantity of finely powdered thorium nitrate, of emanating power ¹⁄₂₀₀ of ordinary thoria, was dropped into a Drechsel bottle containing hot water and the emanation rapidly swept out into the testing vessel by a current of air. The ionization current rose quickly to a maximum, but soon fell again to a steady value; showing that the amount of emanation released when the nitrate dissolves, is greater than the subsequent amount produced from the solution.

The rapid loss of the activity of the thorium emanation makes a quantitative comparison like that for radium very difficult. By slightly altering the conditions of the experiment, however, a definite proof was obtained that the rate of production of emanation is the same in the solid compound as in the solution. After dropping in the nitrate, a rapid air stream was blown through the solution for 25 seconds into the testing vessel. The air stream was stopped and the ionization current immediately measured. The solution was then allowed to stand undisturbed for 10 minutes. In that time the accumulation of the emanation again attained a practical maximum and again represented a steady state. The stream of air was blown through, as before, for 25 seconds, stopped and the current again measured. In both cases, the electrometer recorded a movement of 14·6 divisions per second. By blowing the same stream of air continuously through the solution the final current corresponded to 7·9 divisions per second or about one-half of that observed after the first rush.

Thus the rate of production of emanation is the same in the solid nitrate as in the solution, although the emanating power, i.e. the rate of escape of the emanation, is over 600 times greater in the solution than in the solid.

It seems probable that the rate of production of emanation by thorium, like the rate of production of Ur X and Th X, is independent of conditions. The changes of emanating power of the various compounds by moisture, heat, and solution must therefore be ascribed solely to an alteration in the rate of escape of the emanation into the surrounding gas and not to an alteration in the rate of its production in the compound.

On this view, it is easy to see that slight changes in the mode of preparation of a thorium compound may produce large changes in emanating power. Such effects have been often observed, and must be ascribed to slight physical changes in the precipitate. The fact that the rate of production of the emanation is independent of the physical or chemical conditions of the thorium, in which it is produced, is thus in harmony with what had previously been observed for the radio-active products Ur X and Th X.

Source of the Thorium Emanation.

154. Some experiments of Rutherford and Soddy[[248]] will now be considered, which show that the thorium emanation is produced, not directly by the thorium itself, but by the active product Th X.

When the Th X, by precipitation with ammonia, is removed from a quantity of thorium nitrate, the precipitated thorium hydroxide does not at first possess appreciable emanating power. This loss of emanating power is not due, as in the case of the de-emanated oxide, to a retardation in the rate of escape of the emanation produced; for the hydroxide, when dissolved in acid, still gives off no emanation. On the other hand, the solution, containing the Th X, possesses emanating power to a marked degree. When the precipitated hydroxide and the Th X is left for some time, it is found that the Th X decreases in emanating power, while the hydroxide gradually regains its emanating power. After about a month’s interval, the emanating power of the hydroxide has nearly reached a maximum, while the emanating power of the Th X has almost disappeared.

The curves of decay and recovery of emanating power with time are found to be exactly the same as the curves of decay and recovery of activity of Th X and the precipitated hydroxide respectively, shown in [Fig. 47]. The emanating power of Th X, as well as its activity, falls to half value in four days, while the hydroxide regains half its final emanating power as well as half its lost activity in the same interval.