Further data are required in order to fix which of the time constants of the changes refers to the first change. In order to settle this point, it is necessary to isolate one of the products of the changes and to examine the variation of its activity with time. If, for example, a product can be separated whose activity decays to half value in 55 minutes, it would show that the second change is the more rapid of the two. Now Pegram[[302]] has examined the radio-active products obtained by electrolysis of thorium solutions. The rates of decay of the active products depended upon conditions, but he found that, in several cases, rapidly decaying products were obtained whose activity fell to half value in about 1 hour. Allowing for the probability that the product examined was not completely isolated by the electrolysis, but contained also a trace of the other product, this result would indicate that the last change which gives rise to rays is the more rapid of the two.

This point is very clearly brought out by some recent experiments of Miss Slater[[303]], who has made a detailed examination of the effect of temperature on the active deposit of thorium.

A platinum wire was made active by exposure for a long interval to the thorium emanation, and then heated for a few minutes to any desired temperature by means of the electric current. The wire, while being heated, was surrounded by a lead cylinder in order that any matter driven off from it should be collected on its surface. The decay of activity both of the wire and of the lead cylinder was then tested separately. After heating to a dull red heat, no sensible diminution of the activity was observed at first, but the rate of decay of the activity on the wire was found to be more rapid than the normal. The activity of the lead cylinder was small at first but increased to a maximum after about 4 hours and then decayed at the normal rate with the time.

These results are to be expected if some thorium A is volatilized from the wire; for the rise of activity on the lead cylinder is very similar to that observed on a wire exposed for a short time in the presence of the thorium emanation, i.e., under the condition that only thorium A is initially present.

On heating the wire above 700° C. the activity was found to be reduced, showing that some thorium B had also been removed. By heating for a few minutes at about 1000° C. nearly all the thorium A was driven off. The activity on the wire then decayed exponentially with the time, falling to half value in about 1 hour. After heating for a minute at about 1200° C. all the activity was removed. These results show that thorium A is more volatile than B, and that the product which gives out rays, viz. thorium B, has a period of about 55 minutes.

Another series of experiments was made, in which an active aluminium disc was placed in an exhausted tube, and exposed to the cathode ray discharge. Under these conditions, a part of the activity of the disc was removed. When the disc was made the anode, the loss of activity was usually 20 to 60 per cent. for half-an-hour’s exposure. If the disc was made the cathode, the loss was much greater, amounting to about 90 per cent. in 10 minutes. Part of the active matter removed from the disc was collected on a second disc placed near it. This second disc on removal lost its activity at a far more rapid rate than the normal. The rate of decay on the first disc was also altered, the activity sometimes even increasing after removal. These results indicate that, in this case, the apparent volatility of the products is reversed. Thorium B is driven off from the disc more readily than thorium A. The rates of decay obtained under different conditions were satisfactorily explained by supposing that the surfaces of the discs after exposure to the discharge were coated with different proportions of thorium A and B.

The escape of thorium B from the disc under the influence of the discharge seems rather to be the result of an action similar to the well-known “sputtering” of electrodes than to a direct influence of temperature.

The results obtained by von Lerch[[304]] on the electrolysis of a solution of the active deposit also admit of a similar interpretation. Products were obtained on the electrodes of different rates of decay, losing half their activity in times varying from about 1 hour to 5 hours. This variation is due to the admixture of the two products in different proportions. The evidence, as a whole, thus strongly supports the conclusion that the active deposit from thorium undergoes two successive transformations as follows:

(1) A “rayless” change for which λ1 = 1·75 × 10-5, i.e., in which half the matter is transformed in 11 hours;

(2) A second change giving rise to α, β and γ rays, for which λ2 = 2·08 × 10-4, i.e., in which half the matter is transformed in 55 minutes[[305]].