264. Constancy of the radiations. The early observations on uranium and thorium had shown that their radio-activity remained constant over the period of several years during which they were examined. The possibility of separating from uranium and thorium the active products Ur X and Th X respectively, the activity of which decayed with the time, seemed at first sight to contradict this. Further observation, however, showed that the total radio-activity of these bodies was not altered by the chemical processes, for it was found that the uranium and thorium from which the active products were removed, spontaneously regained their radio-activity. At any time after removal of the active product, the sum total of the radio-activity of the separated product together with that of the substance from which it has been separated is always equal to that of the original compound before separation. In cases where active products, like Ur X and the radium emanation, decay with time according to an exponential law, this follows at once from the experimental results. If I1 is the activity of the product at any time t after separation, and I₀ the initial value, we know that

At the same time the activity I2 recovered during the same interval t is given by

where λ is the same constant as before. It thus follows that I1 + I2 = I₀, which is an expression of the above result. The same is also true whatever the law of decay of activity of the separated product (see [section 200]). For example, the activity of Th X after separation from thorium at first increases with the time. At the same time, the activity of the residual thorium compound at first decreases, and at such a rate that the sum of the activities of the thorium and its separated product is always equal to that of the original thorium.

This apparent constancy of the total radiation follows from the general result that the radio-active processes cannot in any way be changed by the action of known forces. It may be recalled that the constant of decay of the activity of a radio-active product has a definite fixed value under all conditions. It is independent of the concentration of the active matter, of the pressure, and of the nature of the gas in which the substance is placed, and it is not affected by wide ranges of temperature. The only observed exception is the product radium C. Its value of λ increases with temperature to some extent at about 1000° C., but at 1200° C. returns nearly to the normal value. In the same way, it has not been found possible to alter the rate of production of active matter from the radio-elements. In addition, there is not a single well-authenticated case where radio-activity has been altered or destroyed in any active body or created in an inactive element.

Certain cases have been observed, which at first sight seem to indicate a destruction of radio-activity. For example, the excited radio-activity is removed from a platinum wire when heated above a red heat. It has been shown, however, by Miss Gates ([section 187]) that the radio-activity is not destroyed, but is deposited in unaltered amount on the colder bodies surrounding it. Thorium oxide has been shown to lose to a large extent its power of emanating by ignition to a white heat. But a close examination shows that the emanation is still being produced at the same rate, but is occluded in the compound.

The total radio-activity of a given mass of a radio-element, measured by the peculiar radiations emitted, is a quantity which can neither be increased nor diminished, although it may be manifested in a series of products which are capable of separation from the radio-element. The term “conservation of radio-activity” is thus a convenient expression of the facts known at the present time. It is quite possible, however, that further experiments at very high or very low temperatures may show that the radio-activity does vary.

Although no difference has been observed in the radio-activity of uranium over an interval of five years, it has been shown ([section 261]) that on theoretical grounds the radio-activity of a given quantity of a radio-element should decrease with the time. The change will, however, be so slow in uranium, that probably millions of years must elapse before a measurable change can take place, while the total radio-activity of a given quantity of matter left to itself should thus decrease, but it ought to be constant for a constant mass of the radio-element. It has already been pointed out ([section 238]) that the activity of radium, measured by the α and β rays, will probably increase for several hundred years after its separation. This is due to the appearance of fresh products in the radium. Ultimately, however, the activity must decrease according to an exponential law with the time, falling to half value in about 1300 years.

The conservation of radio-activity applies not only to the radiations taken as a whole, but also to each specific type of radiation. If the emanation is removed from a radium compound, the amount of β radiation of the radium at once commences to decrease, but this is compensated by the appearance of β rays in the radiations from the vessel in which the separated emanation is stored. At any time the sum total of the β radiations from the radium and the emanation vessel is always the same as that from the radium compound before the emanation was removed.