Now on the estimate of the life of radium given in section 261 the value of λ is ¹⁄₁₈₅₀ when 1 year is taken as the unit of time. The total heat emission from 1 gram of radium during its life is thus 1·6 × 109 gram-calories. The heat emitted in the union of hydrogen and oxygen to form 1 gram of water is about 4 × 103 gram-calories, and in this reaction more heat is given out for equal weights than in any other chemical reaction known. It is thus seen that the total energy emitted from 1 gram of radium during its changes is about one million times greater than in any known molecular change. That matter is able, under special conditions, to emit an enormous amount of energy, is well exemplified by the case of the radium emanation. Calculations of the amount of this energy have already been given in [section 249].

Since the other radio-elements only differ from radium in the slowness of their change, the total heat emission from uranium and thorium must be of a similar high order of magnitude. There is thus reason to believe that there is an enormous store of latent energy resident in the atoms of the radio-elements. This store of energy could not have been recognized if the atoms had not been undergoing a slow process of disintegration. The energy emitted in radio-active changes is derived from the internal energy of the atoms. The emission of this energy does not disobey the law of the conservation of energy, for it is only necessary to suppose that, when the radio-active changes have ceased, the energy stored up in the atoms of the final products is less than that of the original atoms of the radio-elements. The difference between the energy originally possessed by the matter which has undergone the change, and the final inactive products which arise, is a measure of the total amount of energy released.

There seems to be every reason to suppose that the atomic energy of all the elements is of a similar high order of magnitude. With the exception of their high atomic weights, the radio-elements do not possess any special chemical characteristics which differentiate them from the inactive elements. The existence of a latent store of energy in the atoms is a necessary consequence of the modern view developed by J. J. Thomson, Larmor, and Lorentz, of regarding the atom as a complicated structure consisting of charged parts in rapid oscillatory or orbital motion in regard to one another. The energy may be partly kinetic and partly potential, but the mere concentration of the charged particles, which probably constitute the atom, in itself implies a large store of energy in the atom, in comparison with which the energy emitted during the changes of radium is insignificant.

The existence of this store of latent energy does not ordinarily manifest itself, since the atoms cannot be broken up into simpler forms by the physical or chemical agencies at our disposal. Its existence at once explains the failure of chemistry to transform the atoms, and also accounts for the rate of change of the radio-active processes being independent of all external agencies. It has not so far been found possible to alter in any way the rate of emission of energy from the radio-elements. If it should ever be found possible to control at will the rate of disintegration of the radio-elements, an enormous amount of energy could be obtained from a small quantity of matter.

267. Production of helium from radium and the radium emanation. Since the final products, resulting from a disintegration of the radio-elements, are not radio-active, they should in the course of geologic ages collect in some quantity, and should always be found associated with the radio-elements. Now the inactive products resulting from the radio-active changes are the α particles expelled at each stage, and the final inactive product or products which remain, when the process of disintegration can no longer be traced by the property of radio-activity.

Pitchblende, in which the radio-elements are mostly found, contains in small quantity a large proportion of all the known elements. In searching for a possible disintegration product common to all the radio-elements, the presence of helium in the radio-active minerals is noteworthy; for helium is only found in the radio-active minerals, and is an invariable companion of the radio-elements. Moreover, the presence in minerals of a light, inert gas like helium had always been a matter of surprise. The production by radium and thorium of the radio-active emanations, which behave like chemically inert gases of the helium-argon family, suggested the possibility that one of the final inactive products of the disintegration of the radio-elements might prove to be a chemically inert gas. The later discovery of the material nature of the α rays added weight to the suggestion; for the measurement of the ratio e/m of the α particle indicated that if the α particle consisted of any known kind of matter, it must either be hydrogen or helium. For these reasons, it was suggested in 1902 by Rutherford and Soddy[[364]] that helium might be a product of the disintegration of the radio-elements.

Sir William Ramsay and Mr Soddy in 1903 undertook an investigation of the radium emanation, with the purpose of seeing if it were possible to obtain any spectroscopic evidence of the presence of a new substance. First of all, they exposed the emanation to very drastic treatment (section 158), and confirmed and extended the results previously noted by Rutherford and Soddy that the emanation behaved like a chemically inert gas, and in this respect possessed properties analogous to the gases of the helium-argon group.

On obtaining 30 milligrams of pure radium bromide (prepared about three months previously) Ramsay and Soddy[[365]] examined the gases, liberated by solution of the radium bromide in water, for the presence of helium. A considerable quantity of hydrogen and oxygen was released by the solution (see [section 124]). The hydrogen and oxygen were removed by passing the liberated gases over a red-hot spiral of partially oxidized copper-wire and the resulting water vapour was absorbed in a phosphorus pentoxide tube.

The gas was then passed into a small vacuum tube which was in connection with a small U tube. By placing the U tube in liquid air, most of the emanation present was condensed, and also most of the CO2 present in the gas. On examining the spectrum of the gas in the vacuum tube, the characteristic line D3 of helium was observed.