269. Age of radio-active minerals. Helium is only found in the radio-active minerals, and this fact, taken in conjunction with the liberation of helium by radium, indicates that the helium must have been produced as a result of the transformation of radium and the other radio-active substances contained in the minerals. Now in a mineral about half the helium is, in many cases, released by heat and the residue by solution. It seems probable that the helium produced throughout the mass of the mineral is mechanically imprisoned in it. Moss[[370]] found that, by grinding pitchblende in vacuo, helium is evolved, apparently showing that the helium exists in cavities of the mineral. Travers[[371]] has suggested that, since helium is liberated on heating, the effect may be due to the heat generated by grinding. The escape of the helium from the heated mineral is probably connected with the fact observed by Jaquerod[[372]] that helium passes through the walls of a quartz tube, heated above 500° C. The substance of the mineral probably possesses a similar property. Travers considers that helium is present in the mineral in a state of supersaturated solid solution, but the facts are equally well explained by assuming that the helium is mechanically imprisoned in the mass of the mineral.

The sudden rise of temperature observed in the mineral fergusonite, at the time the helium is released, has been found to have nothing to do with the presence of helium, for it also takes place in minerals not containing helium. The old view that helium was in a state of chemical combination with the mineral must be abandoned in the light of these more recent experiments.

Since the helium is only released from some minerals by the action of high temperatures and solution, it appears probable that a large proportion of the helium found in the minerals is unable to escape under normal conditions. Thus if the rate of production of helium by the radio-active substance were definitely known, it should be possible to calculate the age of the mineral by observing the volume of helium liberated from it by solution.

In the absence of such definite information, an approximate calculation will be made to indicate the order of magnitude of the time that has elapsed since the mineral was formed or was at a temperature low enough to prevent the escape of the helium.

Let us take, for example, the mineral fergusonite, which was found by Ramsay and Travers[[373]] to evolve 1·81 c.c. of helium. The fergusonite contained about 7 per cent. of uranium. Now uranium in old minerals probably contains about 8 × 10-7 of its weight of radium (see [section 262]). One gram of the mineral thus contained about 5·6 × 10-8 grams of radium. Now if the α particle is helium, it has been shown that 1 gram of radium produces 0·24 c.c. of helium per year. The volume of helium produced per year in 1 gram of fergusonite is thus 1·3 × 10-8 c.c. Assuming that the rate of production of helium has been uniform, the time required to produce 1·81 c.c. per gram is about 140 million years. If the calculated rate of production of helium by radium is an over-estimate, the time is correspondingly lengthened.

I think that, when the constants required for these calculations are more definitely fixed, this method will probably give fairly trustworthy information as to the probable age of some of the radio-active minerals of the earth’s crust, and indirectly as to the age of the strata in which they are found.

In this connection it is of interest to note that Ramsay[[374]] found that a Ceylon mineral, thorianite, contained as much as 9·5 c.c. of helium per gram. According to the analysis by Dunstan, this mineral contains about 76 per cent. of thorium and 12 per cent. of uranium. The unusually large amount of helium evolved from this mineral would indicate that it was formed at an earlier date than the fergusonite previously considered.

270. Possible causes of disintegration. In order to explain the phenomena of radio-activity, it has been supposed that a certain small fraction of the radio-atoms undergoes disintegration per second, but no assumptions have been made as to the cause which produces the instability and consequent disintegration. The instability of the atoms may be supposed to be brought about either by the action of external forces or by that of forces inherent in the atoms themselves. It is conceivable, for example, that the application of some slight external force might cause instability and consequent disintegration, accompanied by the liberation of a large amount of energy, on the same principle that a detonator is necessary to start some explosives. It has been shown that the number of atoms of any radio-active product which break up per second is always proportional to the number present. This law of change does not throw any light on the question, for it would be expected equally on either hypothesis. It has not been found possible to alter the rate of change of any product by the application of any known physical or chemical forces, unless possibly it is assumed that the force of gravitation which is not under our control may influence in some way the stability of the radio-atoms.

It seems likely therefore that the cause of the disruption of the atoms of the radio-elements and their products resides in the atoms themselves. According to the modern views of the constitution of the atom, it is not so much a matter of surprise that some atoms disintegrate as that the atoms of the elements are so permanent as they appear to be. In accordance with the hypothesis of J. J. Thomson, it may be supposed that the atoms consist of a number of small positively and negatively charged particles in rapid internal movement, and held in equilibrium by their mutual forces. In a complex atom, where the possible variations in the relative motion of the parts are very great, the atom may arrive at such a phase that one part acquires sufficient kinetic energy to escape from the system, or that the constraining forces are momentarily neutralised, so that the part escapes from the system with the velocity possessed by it at the instant of its release.

Sir Oliver Lodge[[375]] has advanced the view that the instability of the atom may be a result of radiation of energy by the atom. Larmor has shown that an electron, subject to acceleration, radiates energy at a rate proportional to the square of its acceleration. An electron moving uniformly in a straight line does not radiate energy, but an electron, constrained to move in a circular orbit with constant velocity, is a powerful radiator, for in such a case the electron is continuously accelerated towards the centre. Lodge considered the simple case of a negatively charged electron revolving round an atom of mass relatively large but having an equal positive charge and held in equilibrium by electrical forces. This system will radiate energy, and, since the radiation of energy is equivalent to motion in a resisting medium, the particle tends to move towards the centre, and its speed consequently increases. The rate of radiation of energy will increase rapidly with the speed of the electron. When the speed of the electron becomes very nearly equal to the velocity of light, according to Lodge, another effect supervenes. It has been shown ([section 82]) that the apparent mass of an electron increases very rapidly as the speed of light is approached, and is theoretically infinite at the speed of light. There will be at this stage a sudden increase of the mass of the revolving atom, and, on the supposition that this stage can be reached, a consequent disturbance of the balance of forces holding the system together. Lodge considers it probable that, under these conditions, the parts of the system will break asunder and escape from the sphere of one another’s influence.