For a given intensity of radiation, the saturation P.D. decreases rapidly with the lowering of the pressure of the gas. This is due to two causes operating in the same direction, viz. a decrease in the intensity of the ionization and an increase in the velocity of the ions. The ionization varies directly as the pressure, while the velocity varies inversely as the pressure. This will obviously have the effect of causing more rapid saturation, since the rate of recombination is slower and the time taken for the ions to travel between the electrodes is less.
The saturation curves observed for the gases hydrogen and carbon dioxide[[49]] are very similar in shape to those obtained for air. For a given intensity of radiation, saturation is more readily obtained in hydrogen than in air, since the ionization is less than in air while the velocity of the ions is greater. Carbon dioxide on the other hand requires a greater P.D. to produce saturation than does air, since the ionization is more intense and the velocity of the ions less than in air.
29. Townsend[[50]] has shown that, for low pressures, the variation of the current with the voltage is very different from that observed at atmospheric pressure. If the increase of current with the voltage is determined for gases, exposed to Röntgen rays, at a pressure of about 1 mm. of mercury, it is found that for small voltages the ordinary saturation curve is obtained; but when the voltage applied increases beyond a certain value, depending on the pressure and nature of the gas and the distance between the electrodes, the current commences to increase slowly at first but very rapidly as the voltage is raised to the sparking value. The general shape of the current curve is shown in [Fig. 5].
Fig. 5.
The portion OAB of the curve corresponds to the ordinary saturation curve. At the point B the current commences to increase. This increase of current has been shown to be due to the action of the negative ions at low pressures in producing fresh ions by collision with the molecules in their path. The increase of current is not observed in air at a pressure above 30 mms. until the P.D. is increased nearly to the value required to produce a spark. This production of ions by collision is considered in more detail in [section 41].
30. Rate of recombination of the ions. A gas ionized by the radiation preserves its conducting power for some time after it is removed from the presence of the active body. A current of air blown over an active body will thus discharge an electrified body some distance away. The duration of this after conductivity can be examined very conveniently in an apparatus similar to that shown in [Fig. 6].
Fig. 6.
A dry current of air or any other gas is passed at a constant rate through a long metal tube TL. After passing through a quantity of cotton-wool to remove dust particles, the current of air passes over a vessel T containing a radio-active body such as uranium, which does not give off a radio-active emanation. By means of insulated electrodes A and B, charged to a suitable potential, the current between the tube and one of these electrodes can be tested at various points along the tube.