He

The planes of these circles are normal to the field. Thus, for a particular velocity u, the value of R varies inversely as the strength of the field. In a uniform field the rays projected normally to the field describe circles, and their directions of projection are the tangents at the origin.

This conclusion has been verified experimentally by Becquerel for the β rays of radium, by an arrangement similar to that shown in [Fig. 23].

Fig. 23.

A photographic plate P, with the film downwards, is enveloped in black paper and placed horizontally in the uniform horizontal magnetic field of an electromagnet. The magnetic field is supposed to be uniform, and, in the figure, is at right angles to the plane of the paper. The plate was covered with a sheet of lead, and on the edge of the plate, in the centre of the magnetic field, is placed a small lead vessel R containing the radio-active matter.

On exciting the magnet, so that the rays are bent to the left of the figure, it is observed that a photographic impression is produced directly below the source of the rays, which have been bent round by the magnetic field. The active matter sends out rays equally in all directions. The rays perpendicular to the field describe circles, which strike the plate immediately under the source. A few of these rays, A1, A2, A3, are shown in the figure. The rays, normal to the plate, strike the plate almost normally, while the rays nearly parallel to the plate strike the plate at grazing incidence. The rays, inclined to the direction of the field, describe spirals and produce effects on an axis parallel to the field passing through the source. In consequence of this, any opaque screen placed in the path of the rays has its shadow thrown near the edge of the photographic plate.

77. Complexity of the rays. The deviable rays from radium are complex, i.e. they are composed of a flight of particles projected with a wide range of velocity. In a magnetic field every ray describes a path, of which the radius of curvature is directly proportional to the velocity of projection. The complexity of the radiation has been shown very clearly by Becquerel[[119]] in the following way.

An uncovered photographic plate, with the film upwards, was placed horizontally in the horizontal uniform magnetic field of an electromagnet. A small, open, lead box, containing the radio-active matter, was placed in the centre of the field, on the photographic plate. The light, due to the phosphorescence of the radio-active matter, therefore, could not reach the plate. The whole apparatus was placed in a dark room. The impression on the plate took the form of a large, diffuse, but continuous band, elliptic in shape, produced on one side of the plate.

Such an impression is to be expected if the rays are sent out in all directions, even if their velocities of projection are the same, for it can readily be shown theoretically, that the path of the rays is confined within an ellipse whose minor axis, which is at right angles to the field, is equal to 2R, and whose major axis is equal to πR. If, however, the active matter is placed in the bottom of a deep lead cylinder of small diameter, the rays have practically all the same direction of projection, and in that case each part of the plate is acted on by rays of a definite curvature.