Fig. 25.

The radio-active matter A is placed on a lead block B´´ between the two parallel lead plates BB´. The rays pass between the parallel plates and ionize the gas between the plates PP´ of the testing vessel. The magnetic field is applied at right angles to the plane of the paper. The dotted rectangle EEEE represents the position of the pole piece. If a compound of radium or thorium is under investigation, a stream of air is required to prevent the diffusion of the radio-active emanations into the testing vessel. When a layer of uranium, thorium or radium compound is placed at A, the ionization in the testing vessel is due mainly to the action of the α and β rays. The α rays are cut off by adding a layer of aluminium ·01 cm. thick over the active material. When the layer of active matter is not more than a few millimetres thick, the ionization due to the γ rays is small compared with that produced by the β rays, and may be neglected. On the application of a magnetic field at right angles to the mean direction of the rays, the ionization in the testing vessel due to the rays steadily decreases as the strength of the field increases, and in a strong field it is reduced to a very small fraction of its original value. In this case the rays are bent so that none of them enter the testing vessel.

Examined in this way, it has been found that the β rays of uranium, thorium, and radium consist entirely of rays readily deflected by a magnetic field. The rays from polonium consist entirely of α rays, the deviation of which can be detected only in very intense magnetic fields.

When the screen covering the active material is removed, in a strong magnetic field, the ionization in the vessel is mainly due to the α rays. On account of the slight deviation of the α rays under ordinary experimental conditions, a still greater increase of the magnetic field does not appreciably alter the current due to them in the testing vessel.

The action of a magnetic field on a very active substance like radium is easily shown by the electrical method, as the ionization current due to the deviable rays is large. With substances of small activity like uranium and thorium, the ionization current due to the deviable rays is very small, and a sensitive electrometer or an electroscope is required to determine the variation, in a magnetic field, of the very small current involved. This is especially the case for thorium oxide, which gives out only about ⅕ of the amount of deviable rays given out by the same weight of uranium oxide.

79. Experiments with a fluorescent screen. The β rays from a few milligrams of pure radium bromide produce intense fluorescence in barium platinocyanide and other substances which can be made luminous under the influence of the cathode rays. Using a centigram of radium bromide, the luminosity on a screen, placed upon it, is bright enough to be observed in daylight. With the aid of such a screen in a dark room many of the properties of the β rays may be simply illustrated and their complex nature clearly shown. A small quantity of radium is placed in the bottom of a short, narrow, lead tube open at one end. This is placed between the pole pieces of an electromagnet, and the screen placed below it. With no magnetic field, a faint luminosity of the screen is observed due to the very penetrating γ rays which readily pass through the lead. When the magnetic field is put on, the screen is brightly lighted up on one side over an area elliptical in shape ([section 77]). The direction of deviation is reversed by reversal of the field. The broad extent of the illumination shows the complex nature of the β rays. On placing a metallic object at various points above the screen, the trajectory of the rays can readily be traced by noticing the position of the shadow cast upon the screen. By observing the density of the shadow, it can be seen that the rays most easily deviated are the least penetrating.

Comparison of the β rays with cathode rays.

80. Means of comparison. In order to prove the identity of the β rays from active bodies with the cathode rays produced in a vacuum tube, it is necessary to show

(1) That the rays carry with them a negative charge;

(2) That they are deviated by an electric as well as by a magnetic field;