SINKING AND BORING WELLS.


[CHAPTER I.]
GEOLOGICAL CONSIDERATIONS.

Nearly every civil engineer is familiar with the fact that certain porous soils, such as sand or gravel, absorb water with rapidity, and that the ground composed of them soon dries up after showers. If a well be sunk in such soils, we often penetrate to considerable depths before we meet with water; but this is usually found on our approaching some lower part of the porous formation where it rests on an impervious bed; for here the water, unable to make its way downwards in a direct line, accumulates as in a reservoir, and is ready to ooze out into any opening which may be made, in the same manner as we see the salt water filtrate into and fill any hollow which we dig in the sands of the shore at low tide. A spring, then, is the lowest point or lip of an underground reservoir of water in the stratification. A well, therefore, sunk in such strata will most probably furnish, besides the volume of the spring, an additional supply of water.

The transmission of water through a porous medium being so rapid, we may easily understand why springs are thrown out on the side of a hill, where the upper set of strata consist of chalk, sand, and other permeable substances, whilst those lying beneath are composed of clay or other retentive soils. The only difficulty, indeed, is to explain why the water does not ooze out everywhere along the line of junction of the two formations, so as to form one continuous land-soak, instead of a few springs only, and these oftentimes far distant from each other. The principal cause of such a concentration of the waters at a few points is, first, the existence of inequalities in the upper surface of the impermeable stratum, which lead the water, as valleys do on the external surface of a country, into certain low levels and channels; and secondly, the frequency of rents and fissures, which act as natural drains. That the generality of springs owe their supply to the atmosphere is evident from this, that they vary in the different seasons of the year, becoming languid or entirely ceasing to flow after long droughts, and being again replenished after a continuance of rain. Many of them are probably indebted for the constancy and uniformity of their volume to the great extent of the subterranean reservoirs with which they communicate, and the time required for these to empty themselves by percolation. Such a gradual and regulated discharge is exhibited, though in a less perfect degree, in all great lakes, for these are not sensibly affected in their levels by a sudden shower, but are only slightly raised, and their channels of efflux, instead of being swollen suddenly like the bed of a torrent, carry off the surplus water gradually.

An Artesian well, so called from the province of Artois, in France, is a shaft sunk or bored through impermeable strata, until a water-bearing stratum is tapped, when the water is forced upwards by the hydrostatic pressure due to the superior level at which the rain-water was received.

Among the causes of the failure of Artesian wells, we may mention those numerous rents and faults which abound in some rocks, and the deep ravines and valleys by which many countries are traversed; for when these natural lines of drainage exist, there remains only a small quantity of water to escape by artificial issues. We are also liable to be baffled by the great thickness either of porous or impervious strata, or by the dip of the beds, which may carry off the waters from adjoining high lands to some trough in an opposite direction,—as when the borings are made at the foot of an escarpment where the strata incline inwards, or in a direction opposite to the face of the cliffs.

Fig. 1.