Fig. 4.
The mere distance of hills or mountains need not discourage us from making trials; for the waters which fall on these higher lands readily penetrate to great depths through highly-inclined or vertical strata, or through the fissures of shattered rocks; and after flowing for a great distance, must often reascend and be brought up again by other fissures, so as to approach the surface in the lower country. Here they may be concealed beneath a covering of undisturbed horizontal beds, which it may be necessary to pierce in order to reach them. The course of water flowing underground is not strictly analogous to that of rivers on the surface, there being, in the one case, a constant descent from a higher to a lower level from the source of the stream to the sea; whereas, in the other, the water may at one time sink far below the level of the ocean, and afterwards rise again high above it.
For the purposes under consideration, we may range the various strata of which the outer crust of the earth is composed under four heads, namely: 1, drift; 2, alluvion; 3, the tertiary and secondary beds, composed of loose, arenaceous and permeable strata, impervious, argillaceous and marly strata, and thick strata of compact rock, more or less broken up by fissures, as the Norwich red and coralline crag, the Molasse sandstones, the Bagshot sands, the London clay, and the Woolwich beds, in the tertiary division; and the chalk, chalk marl, gault, the greensands, the Wealden clay, and the Hastings sand; the oolites, the has, the Rhætic beds, and Keuper, and the new red sandstone, in the secondary division; and 4, the primary beds, as the magnesian limestone, the lower red sand, and the coal measures, which consist mainly of alternating beds of sandstones and shales with coal.
The first of these divisions, the drift, consisting mainly of sand and gravel, having been formed by the action of flowing water, is very irregular in thickness, and exists frequently in detached masses. This irregularity is due to the inequalities of the surface at the period when the drift was brought down. Hollows then existing would often be filled up, while either none was deposited on level surfaces, or, if deposited, was subsequently removed by denudation. Hence we cannot infer when boring through deposits of this character that the same, or nearly the same, thickness will be found at even a few yards’ distance. In valleys this deposit may exist to a great depth, the slopes of hills are frequently covered with drift, which has either been arrested by the elevated surface or brought down from the upper portions of that surface by the action of rain. In the former case the deposits will probably consist of gravel, and in the latter, of the same elements as the hill itself.
The permeability of such beds will, of course, depend wholly upon the nature of the deposit. Some rocks produce deposits through which water percolates readily, while others allow a passage only through such fissures as may exist. Sand and gravel constitute an extremely absorbent medium, while an argillaceous deposit may be wholly impervious. In mountainous districts springs may often be found in the drift; their existence in such formations will, however, depend upon the position and character of the rock strata; thus, if the drift cover an elevated and extensive slope of a nature similar to that of the rocks by which it is formed, springs due to infiltration through this covering will certainly exist near the foot of the slope. Upon the opposite slope, the small spaces which exist between the different beds of rock receive these infiltrations directly, and serve to completely drain the deposit which, in the former case, is, on the contrary, saturated with water. If, however, the foliations or the joints of the rocks afford no issue to the water, whether such a circumstance be due to the character of their formation, or to the stopping up of the issues by the drift itself, these results will not be produced.
It will be obvious how, in this way, by passing under a mass of drift the water descending from the top of hill slopes reappears at their foot in the form of springs. If now we suppose these issues stopped, or covered by an impervious stratum of great thickness, and this stratum pierced by a boring, the water will ascend through this new outlet to a level above that of its original issue, in virtue of the head of water measured from the points at which the infiltration takes place to the point in which it is struck by the boring.
Alluvion, like drift, consists of fragments of various strata carried away and deposited by flowing water; it differs from the latter only in being more extensive and regular, and, generally, in being composed of elements brought from a great distance, and having no analogy with the strata with which it is in contact. Usually it consists of sand, gravel, rolled pebbles, marls or clays. The older deposits often occupy very elevated districts, which they overlie throughout a large extent of surface. At the period when the large rivers were formed, the valleys were filled up with alluvial deposits, which at the present day are covered by vegetable soil, and a rich growth of plants, through which the water percolates more slowly than formerly. The permeability of these deposits allows the water to flow away subterraneously to a great distance from the points at which it enters. Springs are common in the alluvion, and more frequently than in the case of drift, they can be found by boring. As the surface, which is covered by the deposit, is extensive, the water circulates from a distance through permeable strata often overlaid by others that are impervious. If at a considerable distance from the points of infiltration, and at a lower level, a boring be put down, the water will ascend in the bore-hole in virtue of its tendency to place itself in equilibrium. Where the country is open and uninhabited, the water from shallow wells sunk in alluvion is generally found to be good enough and in sufficient quantity for domestic purposes.
The strata of the tertiary and secondary beds, especially the latter, are far more extensive than the preceding, and yield much larger quantities of water. The chalk is the great water-bearing stratum for the larger portion of the south of England. The water in it can be obtained either by means of ordinary shafts, or by Artesian wells bored sometimes to great depths, from which the water will frequently rise to the surface. It should be observed that water does not circulate through the chalk by general permeation of the mass, but through fissures. A rule given by some for the level at which water may be found in this stratum is, “Take the level of the highest source of supply, and that of the lowest to be found. The mean level will be the depth at which water will be found at any intermediate point, after allowing an inclination of at least 10 feet a mile.” This rule will also apply to the greensand. This formation contains large quantities of water, which is more evenly distributed than in the chalk. The gault clay is interposed between the upper and the lower greensand, the latter of which also furnishes good supplies. In boring into the upper greensand, caution should be observed so as not to pierce the gault clay, because water which permeates through that system becomes either ferruginous, or contaminated by salts and other impurities.
The next strata in which water is found are the upper and inferior oolites, between which are the Kimmeridge and Oxford clays, which are separated by the coral rag. There are instances in which the Oxford clay is met with immediately below the Kimmeridge, rendering any attempt at boring useless, because the water in the Oxford clay is generally so impure as to be unfit for use. And with regard to finding water in the oolitic limestone, it is impossible to determine with any amount of precision the depth at which it may be reached, owing to the numerous faults which occur in the formation. It will therefore be necessary to employ the greatest care before proceeding with any borings. Lower down in the order are the upper has, the marlstone, the lower has, and the new red sandstone. In the marlstone, between the upper and lower beds of the has, there may be found a large supply of water, but the level of this is as a rule too low to rise to the surface through a boring. It will be necessary to sink shafts in the ordinary way to reach it. In the new red sandstone, also, to find the water, borings must be made to a considerable depth, but when this formation exists a copious supply may be confidently anticipated, and when found the water is of excellent quality.
Every permeable stratum may yield water, and its ability to do this, and the quantity it can yield, depend upon its position and extent. When underlaid by an impervious stratum, it constitutes a reservoir of water from which a supply may be drawn by means of a sinking or a bore-hole. If the permeable stratum be also overlaid by an impervious stratum, the water will be under pressure and will ascend the bore-hole to a height that will depend on the height of the points of infiltration above the bottom of the bore-hole. The quantity to be obtained in such a case as we have already pointed out, will depend upon the extent of surface possessed by the outcrop of the permeable stratum. In searching for water under such conditions a careful examination of the geological features of the district must be made. Frequently an extended view of the surface of the district, such as may be obtained from an eminence, and a consideration of the particular configuration of that surface, will be sufficient to enable the practical eye to discover the various routes which are followed by the subterranean water, and to predicate with some degree of certainty that at a given point water will be found in abundance, or that no water at all exists at that point. To do this, it is sufficient to note the dip and the surfaces of the strata which are exposed to the rains. When these strata are nearly horizontal, water can penetrate them only through their fissures or pores; when, on the contrary, they lie at right-angles, they absorb the larger portion of the water that falls upon their outcrop. When such strata are intercepted by valleys, numerous springs will exist. But if, instead of being intercepted, the strata rise around a common point, they form a kind of irregular basin, in the centre of which the water will accumulate. In this case the surface springs will be less numerous than when the strata are broken. But it is possible to obtain water under pressure in the lower portions of the basin, if the point at which the trial is made is situate below the outcrop.