The resistance experienced in boring through different strata is various; and some rocks passed through are so hard, that with 12,000 blows a day of a boring tool weighing nearly 10 cwt., with 19 inches height of fall, the bore-hole was advanced only 3 to 4 inches a day. As the opposite case, strata of running sand have been met with so wet, that a slight movement of the rod at the bottom of the hole was sufficient to make the sand rise 30 to 40 feet in the bore-hole. In these cases Dru has adopted the Chinese method of effecting a speedy clearance, by means of a shell closed by a large ball-clack at the bottom, as shown in [Fig. 186], and suspended by a rope, to which a vertical movement is given; each time the shell falls upon the sand a portion of this is forced up into the cylinder, and retained there by the ball-valve.

Borings of large diameter, for mines or other shafts, are also sunk by means of the same description of boring tools, only considerably increased in size, extending up to as much as 14 feet diameter. The well is then lined with cast-iron or wrought-iron tubing, for the purpose of making it water-tight; and a special contrivance, invented by Kind, and alluded to at p. [110], has been adopted for making a water-tight joint between the tubing and the bottom of the well, or with another portion of tubing previously lowered down. This is done by a stuffing-box, shown in [Fig. 188], which contains a packing of moss at A A. The upper portion of the tubing is drawn down to the lower portion by the tightening screws B B, so as to compress the moss-packing when the weight is not sufficient for the purpose. A space C is left between the tubing and the side of the well, to admit of the passage of the stuffing-box flange, and also for running in concrete for the completion of the operation. The moss-packing rests upon the bottom flange D; but this flange is sometimes omitted. The joint is thus simply made by pressing out the moss-packing against the sides of the well; and this material, being easily compressible and not liable to decay under water, is found to make a very satisfactory and durable joint.

Fig. 188.

M. Dru states that the reaction tool has been successfully employed for borings up to as large as about 4 feet diameter, witness the case of the well at Butte-aux-Cailles of 47 inches diameter; but beyond that size he considers the shock requisite to liberate the larger and heavier tool would probably be so excessive, as to be injurious to the boring rods and the rest of the attachments; and he therefore designed the arrangement of the disengaging rod for liberating the tool in borings of large diameter, whereby all shock upon the boring rods was avoided and the tool was liberated with complete certainty.

In practice it is necessary, as with the common chisel, to turn the boring tool partly round between each stroke, so as to prevent it from falling every time in the same position at the bottom of the well; and this was effected in the well at Butte-aux-Cailles by manual power at the top of the well, by means of a long hand-lever fixed to the boring rod by a clip bolted on, which was turned round by a couple of men through part of a revolution during the time that the tool was being lifted. The turning was ordinarily done in the right-hand direction only, so as to avoid the risk of unscrewing any of the screwed couplings of the boring rods; and care was taken to give the boring rod half a turn when the tool was at the bottom, so as to tighten the screw-couplings, which otherwise might shake loose. In the event of a fracture, however, leaving a considerable length of boring rod in the hole, it was sometimes necessary to have the means of unscrewing the couplings of the portion left in the hole, so as to raise it in parts instead of all at once. In that case a locking clip was added at each screwed joint above, and secured by bolts, as shown at C in [Fig. 180], at the time of putting the rods together for lowering them down the well to recover the broken portion; and by this means the ends of the rods were prevented from becoming unscrewed in the coupling sockets, when the rods were turned round backwards for unscrewing the joints in the broken length at the bottom of the bore-hole.

When running sands are met with, the plan adopted is to use the Chinese ball-scoop, or shell, [Fig. 186], described for clearing the bottom of the bore-hole; and where there is too much sand for it to be got rid of in this way, a tube has to be sent down from the surface to shut off the sand. This, of course, necessitates diminishing the diameter of the hole in passing through the sand; but on reaching the solid rock below the running sand, an expanding tool is used for continuing the bore-hole below the tubing with the same diameter as above it, so as to allow the tubing to go down with the hole.

In the case of meeting with a surface of very hard rock at a considerable inclination to the bore-hole, M. Dru employs a tool, the cutters of which are fixed in a circle all round the edge of the tool, instead of in a single diameter line; the length of the tool is also considerably increased in such cases, as compared with the tools used for ordinary work, so that it is guided for a length of as much as 20 feet. He uses this tool in all cases where from any cause the hole is found to be going crooked, and has even succeeded by this means in straightening a hole that had previously been bored crooked.

The cutting action of this tool is all round its edge; and therefore in meeting with an inclined hard surface, as there is nothing to cut on the lower side, the force of the blow is brought to bear on the upper side alone, until an entrance is effected into the hard rock in a true straight line with the upper part of the hole.