77. The Endoplasm of the Peripylea.—The intracapsular protoplasm of the Spumellaria or Peripylea is usually distinguished by a more or less complete radial arrangement, which does not occur in the same form in other Radiolaria; it may be regarded as characteristic of this legion, for it probably occurs in all the species at some period of life or other, and stands in a direct causal relationship with the typical structure of the capsule-membrane in all the "Peripylea" (see note A). For as this is commonly perforated by very numerous pores distributed at equal intervals over the whole surface of the capsule, and since a communication between the intra- and extracapsular sarcode takes place through these, the radiate structure of the endoplasm may be readily explained as due to the influence of radial currents which take place continuously or intermittently in the endoplasm. This radiate structure is most obvious when the endoplasm contains no secondary products or only an insignificant amount of these, and thus appears colourless and almost homogeneous, or only finely granular. Under these circumstances, an optical section of the central capsule usually reveals a distinct radial striation; numerous narrow, straight, dark streaks alternating regularly with still narrower clear ones; the latter consist of homogeneous, the former of more or less granular protoplasm (Pl. [20], fig. 1a). Often there may be distinguished in each darker streak a single straight row of strongly refracting (fat?) granules, sometimes several such rows. Occasionally the whole endoplasm becomes divided up into a number of large "radial wedges," club-shaped, conical or pyramidal masses of granular protoplasm, separated by clear divisions of hyaline plasma (e.g., in Actissa radiata, p. [14], where in the optical section of the central capsule, between the membrane and the nucleus, twenty-five dark radial wedges of equal size were separated by thick clear partitions of hyaline protoplasm). In the majority of the Spumellaria this radial striation is partially or entirely concealed by the formation of pigment or of other products. Very often it is only visible in the cortical layer, which lies immediately below the capsule-membrane (Pl. [1], figs. 1, 3). The remarkable "centripetal cones" which characterise the Thalassicollid genus Physematium, and were formerly described as "centripetal cell-groups," are probably a special development of these cortical radial wedges; they are conical cortical bodies, regularly distributed on the inner surface of the membrane of the central capsule, and disposed with the apex turned towards the centre (see note B). More rarely than in the cortical layer, a similar radial structure is to be found in the innermost medullary layer immediately surrounding the nucleus. Here the endoplasm sometimes breaks up into fine radial threads, which are anatomically separable and hang down from the free nucleus as thin processes (see note C). In some cases it is also possible to isolate radial rods from the cortical layer of teased out central capsules.
A. The radial structure of the endoplasm was first described in my Monograph (1862, p. 74), though R. Hertwig (1879, p. 112) was the first to indicate its typical significance in the case of the Peripylea, and to demonstrate its causal relation with the radial currents in the central capsule of this legion. More recent investigations have led me to the conviction that this phenomenon is more widespread, and often more strongly developed, than was formerly imagined, and that it is probably one of the typical characters of all Spumellaria (at least of the Monozoa).
B. The centripetal cones of Physematium, which have hitherto been known only in these colossal Thalassosphærida, were fully described in my Monograph under the name "conical centripetal cell-groups"; by their first discoverer, A. Schneider (L. N. [13]), they were termed "nests," and compared with the "nests" (central capsules) of the Polycyttaria. In the Physematium mülleri of the Mediterranean (hitherto only observed by Schneider and myself at Messina) it appeared as though each centripetal cone were composed of a group of from three to nine (usually four or five) slender wedge-shaped cells, whose common centripetal apex was produced into a radial thread of sarcode (L. N. [16], p. 258, Taf. iii. fig. 7). Since then (1866) I have observed at Lanzerote, in the Canary Islands, a nearly related form, which I take to be Physematium atlanticum, Meyen. In this, however, the "centripetal cell-groups" were wanting, and the whole cortical layer of the endoplasm was cleft into numerous radial portions, each enclosing a nucleus (probably the mother-cells of flagellate spores, see p. [35]).
C. The radial fibres of the medullary endoplasm which cling to an extracted nucleus have been observed by Hertwig in certain Sphæroidea (Diplosphæra, Arachnosphæra) (L. N. [33], p. 40).
78. The Endoplasm of the Actipylea.—The intracapsular protoplasm of the Acantharia or Actipylea is often distinguished by a partial or complete radial arrangement like that of the Peripylea, but differing in the number, size, form, and distribution of the radial portions into which the endoplasm is differentiated. For since the pores of the capsule membrane are distributed at equal distances all over the surface in the Spumellaria, whilst in the Acantharia they are arranged in definite groups, and since the number and arrangement of the pores has a direct influence upon the internal currents of the endoplasm, it follows that the radial structure in the latter legion must be very different from that in the former. In addition to this there must not be forgotten the important influence which the early centrogenous formation of the skeletal rods exercises upon the disposition and growth of the intracapsular structures. Hence the endoplasm of the Acantharia does not separate into innumerable thin, closely packed radial wedges or cortical radial rods, but into a small number of large pyramidal portions between which run the radially disposed heterogeneous portions of the contents of the capsule, viz., the radial bars of acanthin and the peculiar intracapsular "axial threads." As a direct consequence of the regular disposition of these heterogeneous radial portions, which is often characteristic of the various families of the Acantharia, a corresponding differentiation of the endoplasm is brought about; it divides into a number of conical or pyramidal portions (radial pyramids), whose bases rest upon the capsule-membrane and whose apices are directed towards the centre of the capsule (the central star of the skeleton). These radial pyramids are, however, but rarely visible, being usually more or less concealed by a dark pigment.
The differentiations of the endoplasm in the central capsule of the Actipylea have been but little investigated, but they appear to vary somewhat in the different groups of this legion. In all Acantharia in which the twenty radial bars are regularly arranged according to the Müllerian law (see p. [717]) and in which axial threads constant in number and disposition run between them from the central star to the capsule-membrane, it obviously follows that the endoplasm must be divided into more or less distinct radial pyramids, and this must the case whether these take the form of continuous tracts or of actually separable portions. The regular polygonal figures, often seen on the surface of the central capsule (with special distinctness in Acanthometron elasticum and Acanthometron pellucidum) separated by a network of granular threads, are the bases of such radial pyramids (see Hertwig, L. N. [43], p. 12, Taf. i. figs. 1-7).
79. The Endoplasm of the Monopylea.—The intracapsular protoplasm of the Nassellaria or Monopylea is distinguished from that of any of the other three legions by the development of a quite peculiar fibrillar structure, the axial "pseudopodial cone," which may shortly be termed the "podoconus" (foot-cone). Since this is in direct correlation with the peculiar structure of the capsular opening, the large "porochora," which is situated at the basal pole of the main axis, it is quite as characteristic of the legion as the latter itself (see note A). The podoconus is primitively a vertical regular cone whose circular base occupies the horizontal porochora or "basal porous area" of the central capsule, while its vertical axis coincides with that of the latter. The apex of the cone, usually somewhat rounded off, is therefore directed towards the aboral or apical pole of the central capsule and separated from it by a larger or smaller interval. In this interval the nucleus originally lies (as in Pl. [51], fig. 13; Pl. [98], fig. 13); but it is usually displaced subsequently and lies excentrically. The cone is of very variable height; on an average its vertical height is about equal to the diameter of its horizontal base; these dimensions are, however, dependent upon the form of the central capsule; the height being greater in slender ovoid or conical capsules, and less in depressed sphæroidal or discoidal ones, than the diameter of the base. The podoconus consists of differentiated endoplasm, which becomes more deeply stained by carmine and offers greater resistance to solvents than the surrounding finely granular protoplasm. The apex, especially, becomes very intensely stained. It always exhibits a very characteristic fine but distinct striation, numerous straight radial lines diverging from the apex of the cone towards the base. The number of these striæ appears to correspond with that of the vertical rods in the porochora, and each of these latter stands apparently in direct communication with the basal end of an apical stria (§ [59]). These threads are probably differentiated constant contractile threads of endoplasm, or even myophanes, comparable with the contractile cortical threads of the Cannopylea and the permanent axial threads of the Actipylea. The numerous modifications, undergone by the form and contents of the central capsule in the different groups of Monopylea, especially those due to the formation of the skeleton, are not without influence upon the podoconus. The most important divergencies from the above described primary form are the following:—(1) The vertical axial cone becomes oblique, its axis inclining in the sagittal plane and approaching either the dorsal or the ventral wall of the capsule; the cause of this appears to be usually the excentric development of the growing nucleus or the formation of a large oil-globule. (2) The smooth mantle of the podoconus becomes divided by three longitudinal furrows into three equal prominent ridges, which correspond to three circular lobes in the porochora; the cause of this basal triradial lobular formation lies probably in the triradial development of the skeleton in many Nassellaria or in the cortinar structure of the collar septum. (3) The simple podoconus splits into three or four elongated lobes, which eventually become almost completely separated and correspond to the lobes of the central capsule, in the axial wall of which they lie as longitudinally striated bands. The behaviour of these bands justifies the hypothesis that the podoconus is a muscular differentiated portion of the endoplasm and is composed of myophane fibrillæ, whose contraction determines the opening of the central capsule.
A. The podoconus of the Monopylea was first described by R. Hertwig in 1879, and recognised as a characteristic component of the central capsule in the most various groups of this legion (in Plectoidea, Stephoidea, Spyroidea, and Cyrtoidea; see his figures, loc. cit., Taf. vii., viii., and the description, pp. 71, 73, 83, 106). Hertwig called it the "pseudopodial cone," and regarded it as a conical process of the capsule-membrane, which is developed from this latter and projects from the porous area into the interior of the central capsule; "it is penetrated by fine canals which arise at the apex of the cone, diverge towards the base, and terminate there in the rods of the pseudopodial area. The intracapsular protoplasm penetrates at the apex of the pseudopodial cone into its fine canals, runs along them and emerges from the rods of the porous area in the form of slender threads" (loc. cit., p. 19). I cannot agree with this view of Hertwig, although I have been able to confirm the accuracy of his description by my own observations upon numerous excellently stained and preserved preparations in the Challenger collection. As I have proved by numerous teased out preparations, and as Hertwig himself correctly states, "the cone is more readily detached from the membrane than from the protoplasm, when the capsule is teased" (loc. cit., p. 73). Hence I regard the podoconus not as a differentiated portion of the capsule-membrane but as endoplasm, and believe that it is composed of myophanes or "contractile muscular fibrils" in the same manner as the cortical layer of the Cannopylea. Probably the contraction of these fibrils serves to raise the opercular rods and hence to allow the exit of the endoplasm through the pores which lie between these opercular rhabdillae (compare § [59]).
80. The Endoplasm of the Cannopylea.—The intracapsular protoplasm of the Phæodaria or Cannopylea is distinguished from that of the other three legions by several characteristic peculiarities, which are very important, since they stand in causal relation to the typical structure of the capsule-membrane and in particular of its remarkable aperture. In the case of many and perhaps of all Phæodaria the endoplasm is differentiated into a granular medullary and a thin fibrillar cortical layer, the former of which usually encloses numerous small vacuoles, while the latter contains muscular fibrillæ. In the voluminous central capsule of large Phæodaria the whole cortical layer of the endoplasm, which lies immediately below the delicate inner capsule-membrane, sometimes appears delicately and regularly striated, and most distinctly so under the apertures, towards the centre of each of which the dark striæ are radially directed (see note A, below). These striæ are probably contractile muscular fibrillæ; or "myophanes," by whose contraction the openings are voluntarily widened. In the Tripylea this fibrillar star is much more strongly developed under the astropyle (the main opening) than under the parapylæ (or accessory openings); and probably the peculiar radial structure of the operculum of the former is due to the stronger development of these radial fibrils (being their impression). In many Phæodaria, indeed, the fine myophane fibrils are only visible under the apertures, whilst in others they form a continuous fibrillar cortical layer on the whole inner surface of the inner capsule-membrane; the fine fibrillæ run meridionally from one pole of the main axis to the other; perhaps the whole central capsule may change its form in consequence of their contractions. The medullary portion of the endoplasm, which lies below this thin cortical layer, is usually finely granular in the Phæodaria, and permeated by numerous spherical vacuoles, which are noteworthy from their equal size and regular distribution. Each clear vacuole usually contains a dark shining fat-granule, more rarely a group of such granules (see note B). Compare § [60], and Pl. [101], figs. 1-3; Pl. [104], figs. 1, 2; Pl. [111], fig. 2; Pl. [128], fig. 2, &c.
A. The fine fibrillæ in the cortical layer of the endoplasm were first described by Hertwig in 1879 (L. N. [33], p. 98, Taf x. figs. 6-10). He found them, however, only below the three openings in the capsule of the Tripylea, where they form three stellate groups of fibrils. I find them very clearly shown, and with especial distinctness, under the astropyle in most Phæodaria of which I have had the opportunity of examining well-stained and preserved central capsules. In many cases, also, the striation is not confined to the apertures, but spreads over the whole cortical layer. Perhaps this constitutes in all Phæodaria a thin myophane-sheet, whose contractile fibrils run from one pole of the main axis to the other and cause by their contraction changes in the form of the spheroidal central capsule.