237. Radiolarian Ooze.—By Radiolarian ooze, in the strict sense of the term, are understood those oceanic deposits, the greater part of which (often more than three-quarters) is composed of the siliceous skeletons of this class. Such pure Radiolarian ooze has only been found in limited areas of the Pacific and Indian Oceans. It is most conspicuous in the Central Pacific, between lat. 12° N. and 8° S., long. 148° W. to 152° W., the depth being everywhere between 2000 and 3000 fathoms (Stations 266 to 268 and 272 to 274). In the deepest of the Challenger soundings (Station 225, 4475 fathoms) the bottom is composed of pure Radiolarian ooze, as well as at the next Station in the Western Tropical Pacific (Station 226, 2300 fathoms), the latitude varying from 12° N. to 15° N., and the longitude from 142° E. to 144° E. In the Indian Ocean also, pure Radiolarian ooze was found in the year 1859 between Zanzibar and the Seychelles, this being the first known example of it (§ [230]). On the other hand, it has not yet been found in the bed of the Atlantic; but the Tertiary formations of Barbados (Antilles, § [231]) like those of the Nicobar Islands (Further India), are to be regarded as pure Radiolarian ooze in the fossil condition. Mixed Radiolarian ooze is the name given to those deposits in which the Radiolaria exceed any of the other organic constituents, although they do not make up half the total mass. To this category belong a large number of the Challenger soundings which are entered in the Station list either as red clay or Globigerina ooze. Such mixed Radiolarian ooze has been discovered (A) in the North Pacific in an elongated area of red clay extending from Station 241 to Station 245 (perhaps even from Station 238 to Station 253), that is, at least, from long. 157° E. to 175° E., between lat. 35° N. and 37° N.; (B) in the tropical Central Pacific in the Globigerina ooze of Stations 270 and 271. The ooze from the latter station, situated almost on the equator (lat. 0° 33′ S., long. 151° 34′ W.), is specially remarkable, for it has yielded more new species of Spumellaria and Nassellaria than any other Station, not excluding even the neighbouring Stations 268, 269, and 272. Probably such mixed Radiolarian ooze is very widely distributed in the depths of the ocean, as, for example, in the South Pacific (Stations 288, 289, 300, and 302), and in the Southern Ocean (Stations 156 to 159); also in the South Atlantic (Stations 324, 325, 331, 332) and in the tropical Atlantic (Stations 348 to 352). When carefully purified and decalcified by acids, Radiolarian ooze appears as a fine shining white powder; in the raw state it is yellowish or reddish, sometimes reddish-brown or dark brown in colour, according to the quantity of oxides of iron, manganese, &c., which it contains. Calcareous skeletons (especially the tests of pelagic Foraminifera) do not occur at all or only in very minute quantities in pure Radiolarian ooze from more than 2000 fathoms, whilst specimens of mixed ooze often contain considerable quantities of them.

Pure Radiolarian ooze was first described by Dr. John Murray as regards its peculiar nature and composition under the name "Radiolarian ooze" (1876, L. N. [27], pp. 525, 526); compare also Sir Wyville Thomson (The Atlantic, L. N. [31], vol. i. pp. 231-238), and John Murray (Narr. Chall. Exp., L. N. [53], vol. i. pt. ii. pp. 920-926, pl. N. fig. 2). The different specimens of pure Radiolarian ooze obtained by the Challenger from the Pacific, and handed to me for investigation, are from depths of from 2250 fathoms to 4475 fathoms, and may be divided according to their composition into three different groups:—I. The Radiolarian ooze of the Western Tropical Pacific, Stations 225 and 226, from depths of 4475 and 2300 fathoms (lat. 11° N. to 15° N., and long. 142° E. to 144° E.). II. The Radiolarian ooze of the northern half of the Central Pacific, Stations 265 to 269, from depths of 2550 to 2900 fathoms. III. The Radiolarian ooze of the southern half of the Central Pacific, Stations 270 to 274, from depths of 2350 to 2925 fathoms. A fourth group would be constituted by the Radiolarian ooze from the Philippines, which was brought up by Brooke in 1860 near the Marianne Islands from 3300 fathoms, and described by Ehrenberg (Monatsber. d. k. preuss. Akad. d. Wiss. Berlin, 1860, p. 765). The Diatom ooze, too, found by the Challenger in the Antarctic regions (Stations 152 to 157) is in some parts so rich in Radiolaria that it passes over into true Radiolarian ooze. Regarding the Radiolarian ooze from Zanzibar, obtained by Captain Pullen in 1859 from 2200 fathoms (§ [230]), we have only the incomplete communications of Ehrenberg (L. N. [24], p. 147). A more accurate knowledge of these deposits from the Indian Ocean, and of those which we may with probability expect from the tropical eastern Atlantic, will be sure to increase very widely our knowledge of the class.

238. Globigerina Ooze.—Next to the Radiolarian ooze proper the Globigerina ooze is the deposit which is richest in the remains of Radiolaria. Often these are so abundant that it is doubtful to which category the specimen should be referred (e.g., Stations 270 and 271, see § [237]). In fact, the two pass without any sharp boundary into each other, and both present transitions to the Diatom ooze. Next to red clay (§ [239]), Globigerina ooze is the most widely distributed of all sediments, and forms a large part of the bed of the ocean at depths of 250 to 2900 fathoms (especially between 1000 and 2000 fathoms). It covers extensive areas at depths below 1800 fathoms, and in still deeper water is replaced by red clay. It is a fine-grained white, grey, or yellowish powder, which sometimes becomes coloured rose, red, or brown owing to the admixture of oxides of iron and manganese. True Globigerina ooze consists for the most part of the accumulated calcareous shells of pelagic Foraminifera, principally Globigerina and Orbulina, but also Hastigerina, Pulvinulina, &c. It contains usually from 50 to 80 per cent. of calcium carbonate, the extreme values being 40 and 95 per cent. After this has been removed by acids, there remains a residue, which consists partly of the siliceous shells of Radiolaria and Diatoms, and partly of mineral particles identical with the volcanic elements of the red clay.

Regarding the composition and significance of the Globigerina ooze, see John Murray (L. N. [27], pp. 523-525, and L. N. [53], vol. i. p. 919). Recently this author has separated from the Globigerina ooze (sensu stricto), the Pteropod ooze, distinguished from the former by the greater abundance of Pteropod shells and calcareous shells of larger pelagic organisms which it contains. It is found in moderate depths (at most 1500 fathoms), and contains fewer Radiolaria.

239. Red Clay.—This is quantitatively the most important of all deep-sea deposits, covering by far the greatest extent of the three great ocean basins at depths greater than 2200 fathoms. It thus far surpasses in area the other deposits, both Radiolaria and Globigerina oozes, and commonly forms a still deeper layer beneath them. Probably these three deep-sea deposits together cover about three-eighths of the whole surface of the earth, that is, about as much as all the continents together, whilst only two-eighths are covered by the terrigenous deposits. Red clay is principally composed of silicate of alumina, mixed in various proportions with other finely granular substances; its usual red colour, which sometimes passes over into grey or brown, is more especially due to admixture of oxides of iron and manganese. Calcareous matter is usually entirely wanting, or present only in traces, whilst free silica is found in very variable, often considerable quantities. The chief mass of the red clay consists of volcanic ashes, pumice, fragments of lava, &c., whilst a large part of it is generally composed of shells of Radiolaria or fragments of them; in many places the number of well-preserved skeletons contained in the red clay is very considerable, so that it passes over gradually into the Radiolarian ooze (e.g., in the North Pacific, Stations 238 to 253, see § [237]). Hence it may be supposed that a large part of the red clay consists of decomposed Radiolarian ooze.

The characteristic composition and fundamental significance of the red clay in the formation of the deep-sea bed were first made known by the discoveries of the Challenger (compare John Murray, 1876, L. N. [27], p. 527, and Narr. Chall. Exp., L. N. [53], vol. i. pt. ii. pp. 920-926, pl. N; also Wyville Thomson, The Atlantic, L. N. [31], vol. i. pp. 226-229). The mineral components of the red clay are for the most part of volcanic origin, due to the decomposition of pumice, lava, &c. Among the organic remains found in it, the siliceous skeletons of Radiolaria are by far the most important, and their number is often considerable. A large portion of the red clay appears to me to consist of broken down Radiolarian shells, in which a peculiar metamorphism probably has taken place. Sir Wyville Thomson was of opinion that a considerable proportion of it consisted of the remains of Globigerina ooze, the calcareous constituents of which had been removed by the carbon dioxide in the deep-sea water (L. N. [31], loc. cit.). Among these remains, however, the siliceous skeletons of the Radiolaria play a significant and often the most important part. Furthermore, John Murray has called attention to the fact that in many deep-sea deposits yellow and red insoluble particles remain, which unmistakably present the form of Radiolarian shells (L. N. [27], p. 513). At Station 303 he found "amorphous clayey matter, rounded yellow minerals, many Radiolaria-shaped;" at Station 302 there was sediment "consisting almost entirely of small rounded red mineral particles; many of these had the form of both Foraminifera and Radiolaria; and it seemed as if some substance had been deposited in and on these organisms." Similar transitions from well-preserved Radiolarian shells into amorphous mineral particles I have found in several other specimens of Challenger soundings, and consider them a further argument for the supposition that the Radiolaria often take an important share in the formation of the red clay.

240. List of Stations at which Radiolaria were observed on the Challenger Expedition.—The 168 Stations recorded below, in soundings or surface preparations from which I found Radiolaria, belong to the most various parts of the sea which the Challenger traversed during her voyage round the world; they constitute about half of the (364) observing Stations contained in the official list published in the Narrative of the Cruise (Narr. Chall. Exp., vol. i. part ii. Appendix ii.).

In addition to the particulars given in the list regarding the geographical position of the Station, depth, temperature, and composition of the bottom deposit, I have added the result of my investigations as regards the relative abundance of the Radiolaria in each. The five letters (A to E) denote the following degrees of frequency:—A, abundant Radiolaria (AI, pure Radiolarian ooze; AII, mixed Radiolarian ooze); B, very numerous Radiolaria (but not a predominating quantity); C, many Radiolaria (medium quantity); D, few Radiolaria; E, very few Radiolaria (as they occur almost always). In using these symbols regard has been had to abundance of the abyssal as well as of the zonarial and pelagic forms (§ [232]); sometimes also the estimated number of Radiolaria has been inserted, based upon information given by John Murray in his Preliminary Report (L. N. [27]), and in the Narrative of the Cruise (L. N. [53]), as well as by Henry B. Brady in his Report on the Foraminifera (Zool. Chall. Exp., part xxii., 1884). From Stations 348 to 352 in the Eastern Tropical Atlantic no specimens of the bottom were obtained, but a rich pelagic Radiolarian fauna was demonstrated by numerous preparations from the surface. The depths are given in fathoms and the temperature in degrees Fahrenheit. In the column describing the nature of the bottom the following abbreviations are used:—

rad. oz. = Radiolarian ooze (§ [237]).
gl. oz. = Globigerina ooze (§ [238]).
r. cl. = red clay (§ [239]).
pt. oz. = Pteropod ooze (see p. [clviii]).
di. oz. = Diatom ooze (see p. [clvii]).
bl. m. = blue mud,
gr. m. = green mud,
volc. m. = volcanic mud,
terrigenous deposits
(see p. [clvi]).
r. m. = red mud.
rad. oz. = Radiolarian ooze (§ [237]).
gl. oz. = Globigerina ooze (§ [238]).
r. cl. = red clay (§ [239]).
pt. oz. = Pteropod ooze (see p. [clviii]).
di. oz. = Diatom ooze (see p. [clvii]).
bl. m. = blue mud,terrigenous deposits
(see p. [clvi]).
gr. m. = green mud,
volc. m. = volcanic mud,
r. m. = red mud.