The family Challengerida represent a large, peculiar, and interesting group of Phæodaria, which are, for the most part, inhabitants of great depths, and were perfectly unknown before the discoveries of the Challenger. The first note on these remarkable Radiolaria was given in 1876 by John Murray, in his Preliminary Reports on Work done on board the Challenger (Proc. Roy. Soc. Lond., vol. xxiv. pp. 471, 536, pl. xxiv. figs. 1, 2). He described the peculiar exceedingly beautiful tracery of their shell, similar to that of the Diatomaceæ, the enclosed central capsule coloured by carmine, and the surrounding mass of black-brown pigment lumps (the phæodium). "At times these Challengerida come up with a good deal of sarcode outside of the shell, and two specimens have been seen to throw out elongated pseudopodia" (loc. cit., p. 536). He found also the shells in the Radiolarian ooze of the deep sea. The number of different forms found in the collection of the Challenger is so great, that I can describe in the following pages not less than six genera and fifty-eight species. A part of these have already been figured by Dr. John Murray in the Narrative of the Challenger Expedition, vol. i. p. 226, Pl. A, 1885.

In my first preliminary note on the Phæodaria, in 1879, I gave a stricter definition of the Challengerida (Sitzungsb. med.-nat. Gesellsch. Jena, Dec. 12, 1879, p. 5). But I united at that time the true Challengerida with the Tuscarorida, which, however, are sharply separated by the entirely different structure of their shell. In Plate A given by Dr. John Murray, and mentioned above, figs. 1-14 represent genuine Challengerida, with diatomaceous shell-structure, whilst figs. 15-20 are Tuscarorida, with porcellanous shell-structure. These latter, therefore, are more closely allied to the Circoporida, whilst the Challengerida exhibit a closer affinity to the Medusettida and Castanellida. But the two latter families never possess that peculiar extremely regular and delicate diatomaceous structure which is exhibited only by the Challengerida.

The general form of the Challengerida is rather simple, usually more or less ovate, sometimes nearly triangular, at other times subspherical. In nearly all species, with a few exceptions, the shell is more or less compressed from the two sides, so that its horizontal transverse section is not circular, but elliptical or lanceolate. In many species the shell is more or less lenticular, with a sharp or sometimes keeled margin. This margin lies in the sagittal plane of the body, whilst the two flat sides are right and left. The main axis is always perpendicular, and its oral or anterior pole is marked by the open mouth of the shell; the latter is in the living organism probably the upper pole, whilst the opposite aboral or posterior pole (often marked by large spines) is the lower pole. The dorsal margin of the mouth is usually different from the ventral, and in the majority of species this difference is so striking, that right and left sides of the body may be recognised immediately, the fundamental form being dipleuric or bilaterally-symmetrical. In a few species, however, and mainly in those simplest forms in which the ovate shell has a circular mouth without teeth, and a circular transverse section, that difference is not recognisable, and the ovate shell is monaxonial, as it is in Gromia and Lagena among the Foraminifera (Pl. [99], figs. 19, 20, 22). The size of the shell is in the majority of species between 0.2 and 0.5 mm.; there are, however, some very small species, in which the diameter of the shell is only 0.05 to 0.08, or even less; and some large species, the diameter of which attains 0.8 to 0.9 mm.

The peculiar structure of the siliceous shell-wall, which we call shortly "diatomaceous," and by which the Challengerida differ from all the other Phæodaria, has been already represented very well by Dr. John Murray, in Pl. A. of the Narrative (vol. i. p. 266, figs. 1c-1e, 2a, 4a, 7a, 7b). This elegant diatomaceous structure is extremely similar or nearly identical with that well-known regular structure which we find in the common Diatomaceæ or Bacillariæ. The entire surface of the shell is covered with a very great number of very small pit-like depressions, perfectly regular, circular in form, equal in size, and quincuncial in arrangement. The neighbouring equidistant pits are always surrounded by regular hexagonal frames of equal size, and the prominent fine crests of these frames produce the regular hexagonal tracery, which gives to the shell such a striking similarity to that of the Diatomaceæ. According to the different positions to which the focus of the microscope is brought, the hexagonal tracery exhibits a different appearance; either a regular network of equal hexagonal frames, or a lattice with equal and equidistant circular openings, or a combination of three crossed and equidistant systems of parallel lines (crossed at angles of 120°). All the well-known and often discussed optical phenomena which are observed in the valves of the Diatomaceæ, reappear also on the shell of the Challengerida.

To recognise the true nature of this diatomaceous structure, sections and slides of the shell are required, and also fragments of broken shells, the broken margins of which are of special value for obtaining further explanation. The figures given by Dr. J. Murray (loc. cit., Pl. A) have already demonstrated that the pit-like depressions are regular small cavities in the flinty shell-wall, which possess an inner and an outer opening. These intraparietal cavities are either spherical (fig. 7b) or cylindrical (fig. 1d, 4a) or spindle-shaped, with a constriction (fig. 2a). Further accurate examinations probably will show a greater variety in their shape. But each cavity constantly possesses two small openings, one on the outer, and the other on the inner surface of the shell-wall. Closer examination (especially of broken shells and slides) proves the presence of these two openings, which in the smaller species seem to be absent on the first view. I may, therefore, suppose that also in the similar valves of the Diatomaceæ, which exhibit exactly the same structure, an inner and an outer opening are always present in each hexagonal pit, and that the very small size alone prevents them from being recognised. The regular hexagonally-framed cavities in the shell-wall of the Challengerida (probably also of the Diatomaceæ) are therefore genuine pores, differing from the pores of other Radiolaria only in their smaller size and the dilatation of the middle part, which is much wider than the two openings.

The mouth of the shell, its single larger opening, exhibits in the various Challengerida a great variety in form and structure, and offers the best means for separating genera and species. According to its essential shape two different subfamilies and six genera may be distinguished in this family. In the first subfamily, Lithogromida, the mouth is a simple large opening in the wall of the shell on the oral pole of its main axis (Pl. [99], figs. 1-15). In the second subfamily, Pharyngellida, the mouth is prolonged into a cylindrical hollow tube, which is prominent into the shell-cavity, and comparable to the pharynx of the Metazoa in general form and function (Pl. [99], figs. 16-20). In this case we may distinguish an inner and an outer mouth of the tubular pharynx.

In a few forms of both subfamilies the mouth is toothless, smooth, and not armed with prominent external spines or teeth, as in Lithogromia, the simplest form of all (Pl. [99], fig. 22) and in Entocannula (figs. 19, 20). In the great majority of Challengerida, however, the outer opening of the mouth is armed with one or more teeth, usually strong prominent spines (figs. 1-18). Usually the base of these teeth is semitubular or a half cylinder, forming a more or less prominent peristome or a proboscis; and always in this case the open concave side of the canal-shaped groove is directed towards the ventral side of the shell, the closed convex side towards the dorsal side. When several teeth arise from the two lateral free margins of the groove, they are also directed towards the ventral side (figs. 2, 12, 17, &c.). Often a deep ventral incision or a guttural constriction separates the base of the proboscis from the genuine shell. The structure of this proboscis or peristome is usually the same as in the diatomaceous shell-wall; but sometimes its lattice-work assumes a different shape.

The opening of the mouth itself is rarely circular, usually it is elliptical or even lanceolate, often triangular. Sometimes two prominent opposite lips may be distinguished as right and left, when the fissure of the mouth is prolonged in a sagittal or longitudinal direction; as upper and lower, when it is prolonged in a frontal or transverse direction. The upper or dorsal lip is always more developed than the lower or ventral; and the entire semitubular proboscis may be regarded as a production of the upper lip. Sometimes the latter attains an extraordinary size and development, the greatest in Challengeria murrayi (Pl. [99], fig. 1).

The teeth of the mouth, which arise from the upper lip, are usually hollow, at least on the base; a prolongation of the shell-cavity arising into the base of the teeth. Their form is very variable, conical, lanceolate, triangular, sabre-shaped, &c. Usually they are more or less curved, and shorter than the radius of the shell; rarely they are straight, and longer than the radius (Pl. [99], figs. 5, 6). More important is their different number, which we have employed for the distinction of subgenera; future observations may prove that they are different genera. The most important are the following cases:—(A.) a single odd dorsal tooth (figs. 5, 16); (B.) two paired lateral teeth (figs. 4, 6, 17); (C.) three teeth, an odd dorsal and two paired lateral (figs. 7, 9, 10); (D.) four paired teeth, two dorsal and two ventral (figs. 3, 13); (E.) five teeth, an odd dorsal and two pairs of lateral (figs. 2, 12); (F.) six teeth in three lateral pairs (fig. 1).

The teeth of the peristome are not the only apophyses which arise from the shell of the Challengerida. In the majority other spines appear on the sagittal margin, which separates the right and left halves of the shell. These marginal spines are characteristic of the genera Challengeron and Porcupinia; they are usually radially directed, straight, conical, sometimes solid, at other times hollow. Their number and arrangement is very variable and serves for the distinction of species; the following differences are the most important:—(A.) a single odd spine on the apical pole of the shell, in the principal axis, opposite to the centre of the mouth (Pl. [99], figs. 6, 7); (B.) two aboral spines, a dorsal and a ventral (figs. 8-10); (C.) a bunch or a crowded group of radial spines on the aboral margin of the shell, usually one larger apical spine surrounded by several smaller dorsal and ventral (figs. 11, 12, 16); (D.) numerous radial spines along the whole sagittal margin of the shell (figs. 13-15).