Cyrtida, Haeckel, 1862, Monogr. d. Radiol., pp. 272, 280.
Cyrtoidea vel Cyrtida, Haeckel, 1881, Prodromus, pp. 425-439.
Polycystina solitaria, Ehrenberg, 1847, Monatsber. d. k. preuss. Akad. d. Wiss. Berlin, pp. 53, 54.
Monodictya nassellaria, Ehrenberg, 1875, Abhandl. d. k. preuss. Akad. d. Wiss. Berlin, pp. 156, 157.
Definition.—Nassellaria with a complete lattice-shell, exhibiting a simple or reduced cephalis, which is neither bilocular nor lobate, without sagittal constriction.
The order Cyrtoidea, described by me in 1862 as the family Cyrtida, is by far the largest of all the main groups of Radiolaria, and remarkable from the extraordinary variety of forms and the number of species. In the following system more than eleven hundred species are described, comprising about one-fourth of the number of species in the whole class of Radiolaria. This astonishing variety, however, is not effected by development of a large number of different types, but by an extraordinary variability within certain restricted boundaries, similar to what is seen among insects and birds. The number of genera, therefore, is comparatively small, and they may all be disposed into four families only, which in my Monograph (1862, p. 280) were distinguished as Monocyrtida, Dicyrtida, Tricyrtida and Stichocyrtida. If we divide these four groups in the following pages into twelve families and twenty-four subfamilies, we are guided by practical considerations only, hoping thereby to give a better survey of the difficult labyrinth of Cyrtoidean morphology.
The Cyrtoidea are characterised by this wonderful richness of specific forms not only in the present seas, but also for millions of years in the former ages of our globe. The majority of all the fossil Radiolaria which are now known belong to this group, and many species of it are so common that great rocks are formed by their union. The fact was first observed by Ehrenberg, who in his first system of Polycystina (1847, loc. cit., p. 54) enumerated forty-four genera and two hundred and eighty-two species; the Cyrtoidea, his Polycystina solitaria, form the preponderant majority of the whole class, viz., twenty-five genera and one hundred and ninety-three species.
In this first system (of 1847), as well as in the last systematic table of Ehrenberg (of 1875, loc. cit.), the Cyrtida as "Polycystina solitaria" are opposed to all other Radiolaria, as "Polycystina composita." The former bear the definition "Testæ siliceæ spatio interno ample pervio, aut passim levius transverse constricto"; the latter, however, "Testæ siliceæ spatio interno celluloso aut strictura longitudinali constricto." In reality these definitions are insufficient, and the conclusions which Ehrenberg derived from the organisation of the Polycystina solitaria and composita, were quite erroneous. So also are the definitions of the three families into which he divided the Polycystina solitaria, afterwards (in 1875) called by him "Monodictya nassellaria." These three families were the Halicalyptrina, Lithochytrina and Eucyrtidina. With these were also united the three genera of Botryodea known to Ehrenberg (Lithobotrys, Botryocampe, Botryocyrtis). We entirely separate these here from the true Cyrtida, on account of their lobate or multilocular cephalis.
Whilst Ehrenberg only knew the skeleton of the Polycystina solitaria, the first observations of living Cyrtida were published by Johannes Müller, 1858, in his fundamental treatise. He gave the first description and figures of the central capsule of this group, with the characteristic lobes developed from its basal part; and of the pseudopodia radiating on all sides (loc. cit., Taf. vi.). The forms described by him were all Mediterranean, one Dicyrtid (Lithomelissa mediterranea), two Tricyrtids (Eucyrtidium zancleum and Pterocanium charybdeum), and one Stichocyrtid (Lithocampe tropeziana).
In my monograph (1862, p. 272-341) I gave a detailed description of all known and some new Cyrtida, and characterised this family by the fundamental monaxonial form of the shell, with two different poles (an upper apical and a lower basal pole), and by the unipolar growth, beginning from the apical pole. I pointed out also the peculiar structure of the monaxonial central capsule. At that time I divided the Cyrtida into five subfamilies, in which, however, the Spyroidea (= Zygocyrtida), and the Botryodea (= Polycyrtida) were united with the true Cyrtoidea (Monocyrtida, Dicyrtida, Stichocyrtida).