If there was any doubt left as to whether in nature the same power was at work which, in animal and man, was hidden away within the soul, this doubt seemed finally to have been dispelled through Galvani's discovery that animal limbs could be made to move electrically through being touched by two bits of different metals. No wonder that 'the storm which was loosed in the world of the physicists, the physiologists and the doctors through Galvani's publication can only be compared with the one crossing the political horizon of Europe at the same time. Wherever there happened to be frogs and two pieces of different metals available, everyone sought proof with his own eyes that the severed limbs could be marvellously re-enlivened.'1

Like many of his contemporaries, Galvani was drawn by the fascinating behaviour of the new force of nature to carry on electrical experiments as a hobby alongside his professional work, anatomical research. For his experiments he used the room where his anatomical specimens were set out. So it happened that his electrical machine stood near some frogs' legs, prepared for dissection. By a further coincidence his assistant, while playing with the machine, released a few sparks just when some of the specimens were in such contact with the surface beneath them that they were bound to react to the sudden alteration of the electric field round the machine caused by its discharge. At each spark the frogs' legs twitched. What Galvani saw with his own eyes seemed to be no less than the union of two phenomena, one observed by Franklin in the heights of the atmosphere, the other by Walsh in the depths of the sea.

Galvani, as he himself describes, proceeded with immense enthusiasm to investigate systematically what accident had thus put into his hands.2 He wanted first to see whether changes occurring naturally in the electrical condition of the atmosphere would call forth the same reaction in his specimens. For this purpose he fastened one end of an iron wire to a point high up outside his house; the lower end he connected with the nervous substance of a limb from one of his specimens, and to the foot of this he attached a second wire whose other end he submerged in a well. The specimen itself was either enclosed in a glass flask in order to insulate it, or simply left lying on a table near the well. And all this he did whenever a thunderstorm was threatening. As he himself reported: 'All took place as expected. Whenever the lightning flashed, all the muscles simultaneously came into repeated and violent twitchings, so that the movements of the muscles, like the flash of the lightning, always preceded the thunder, and thus, as it were, heralded its coming.' We can have some idea of what went on in Galvani's mind during these experiments if we picture vividly to ourselves the animal limbs twitching about every time the lightning flashed, as if a revitalizing force of will had suddenly taken possession of them.

In the course of his investigations - he carried them on for a long time - Galvani was astonished to observe that some of his specimens, which he had hung on to an iron railing by means of brass hooks, sometimes fell to twitching even when the sky was quite clear and there was no sign of thunder. His natural conclusion was that this must be due to hitherto unnoticed electrical changes in the atmosphere. Observations maintained for hours every day, however, led to no conclusive result; when twitchings did occur it was only with some of the specimens, and even then there was no discoverable cause. Then it happened one day that Galvani, 'tired out with fruitless watching', took hold of one of the brass hooks by which the specimens were hung, and pressed it more strongly than usual against the iron railing. Immediately a twitching took place. 'I was almost at the point of ascribing the occurrence to atmospheric electricity,' Galvani tells us. All the same he took one of the specimens, a frog, into his laboratory and there subjected it to similar conditions by putting it on an iron plate, and pressing against this with the hook that was stuck through its spinal cord. Immediately the twitching occurred again. He tried with other metals and, for checking purposes, with non-metals as well. With some ingenuity he fixed up an arrangement, rather like that of an electric bell, whereby the limbs in contracting broke contact and in relaxing restored it, and so he managed to keep the frog in continuous rhythmical movement.

Whereas Galvani had been rightly convinced by his earlier observations that the movement in the specimens represented a reaction to an electric stimulus from outside, he now changed his mind. In the very moment of his really significant discovery he succumbed to the error that he had to do with an effect of animal electricity located somewhere in the dead creature itself, perhaps in the fashion of what had been observed in the electric fishes. He decided that the metal attachment served merely to set in motion the electricity within the animal.

Whilst Galvani persisted in this mistake until his death, Volta realized that the source of the electric force, as in the first of Galvani's observations, must still be sought outside the specimens, and himself rightly attributed it to the contacting metals. Guided by this hypothesis, Volta started systematic research into the Galvanic properties of metals, and presently succeeded in producing electricity once more from purely mineral substances, namely from two different metals in contact with a conductive liquid.

This mode of producing electricity, however, differed from any previously known in allowing for the first time the production of continuous electrical effects. It is this quality of the cells and piles constructed by Volta that laid open the road for electric force to assume that role in human civilization which we have already described. That Volta himself was aware of this essentially new factor in the Galvanic production of electricity is shown by his own report to the Royal Society:

'The chief of my results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects, viz. such as giving shocks to the arms, &c, the Leyden phial, and still better electric batteries weakly charged; . . . but which infinitely surpasses the virtue and power of these same batteries; as it has no need, like them, of being charged beforehand, by means of a foreign electricity; and as it is capable of giving the usual commotion as often as ever it is properly touched.'

Whilst Volta's success was based on avoiding Galvani's error, his apparatus nevertheless turned out inadvertently to be a close counterpart of precisely that animal organ which Galvani had in mind when misinterpreting his own discoveries! That Volta himself realized this is clear from the concluding words in his letter:

'This apparatus, as it resembles more the natural organ of the torpedo, or of the electrical eel, than the Leyden Phial or the ordinary electric batteries, I may call an artificial electric organ.'