Observation having revealed the different properties of a given geometrical or physical object, it is discovered that in many cases these properties depend in some way upon one another. This interdependence of properties (say that of equal sides and equal angles at the base of a triangle, the relation of pressure to motion,) is nowhere so distinctly marked, nowhere is the necessity and permanency of the interdependence so plainly noticeable, as in the fields mentioned. Hence the continuity and logical consequence of the ideas which we acquire in those fields. The relative simplicity and perspicuity of geometrical and physical relations supply here the conditions of natural and easy progress. Relations of equal simplicity are not met with in the fields which the study of language opens up. Many of you, doubtless, have often wondered at the little respect for the notions of cause and effect and their connexion that is sometimes found among professed representatives of the classical studies. The explanation is probably to be sought in the fact that the analogous relation of motive and action familiar to them from their studies, presents nothing like the clear simplicity and determinateness that the relation of cause and effect does.
That perfect mental grasp of all possible cases, that economical order and organic union of the thoughts which comes from it, which has grown for every one who has ever tasted it a permanent need which he seeks to satisfy in every new province, can be developed only by employment with the relative simplicity of mathematical and scientific investigations.
When a set of facts comes into apparent conflict with another set of facts, and a problem is presented, its solution consists ordinarily in a more refined distinction or in a more extended view of the facts, as may be aptly illustrated by Newton's solution of the problem of dispersion. When a new mathematical or scientific fact is demonstrated, or explained, such demonstration also rests simply upon showing the connexion of the new fact with the facts already known; for example, that the radius of a circle can be laid off as chord exactly six times in the circle is explained or proved by dividing the regular hexagon inscribed in the circle into equilateral triangles. That the quantity of heat developed in a second in a wire conveying an electric current is quadrupled on the doubling of the strength of the current, we explain from the doubling of the fall of the potential due to the doubling of the current's intensity, as also from the doubling of the quantity flowing through, in a word, from the quadrupling of the work done. In point of principle, explanation and direct proof do not differ much.
He who solves scientifically a geometrical, physical, or technical problem, easily remarks that his procedure is a methodical mental quest, rendered possible by the economical order of the province—a simplified purposeful quest as contrasted with unmethodical, unscientific guess-work. The geometer, for example, who has to construct a circle touching two given straight lines, casts his eye over the relations of symmetry of the desired construction, and seeks the centre of his circle solely in the line of symmetry of the two straight lines. The person who wants a triangle of which two angles and the sum of the sides are given, grasps in his mind the determinateness of the form of this triangle and restricts his search for it to a certain group of triangles of the same form. Under very different circumstances, therefore, the simplicity, the intellectual perviousness, of the subject-matter of mathematics and natural science is felt, and promotes both the discipline and the self-confidence of the reason.
Unquestionably, much more will be attained by instruction in the mathematics and the natural sciences than now is, when more natural methods are adopted. One point of importance here is that young students should not be spoiled by premature abstraction, but should be made acquainted with their material from living pictures of it before they are made to work with it by purely ratiocinative methods. A good stock of geometrical experience could be obtained, for example, from geometrical drawing and from the practical construction of models. In the place of the unfruitful method of Euclid, which is only fit for special, restricted uses, a broader and more conscious method must be adopted, as Hankel has pointed out.[124] Then, if, on reviewing geometry, and after it presents no substantial difficulties, the more general points of view, the principles of scientific method are placed in relief and brought to consciousness, as Von Nagel,[125] J. K. Becker,[126] Mann,[127] and others have well done, fruitful results will be surely attained. In the same way, the subject-matter of the natural sciences should be made familiar by pictures and experiment before a profounder and reasoned grasp of these subjects is attempted. Here the emphasis of the more general points of view is to be postponed.
Before my present audience it would be superfluous for me to contend further that mathematics and natural science are justified constituents of a sound education,—a claim that even philologists, after some resistance, have conceded. Here I may count upon assent when I say that mathematics and the natural sciences pursued alone as means of instruction yield a richer education in matter and form, a more general education, an education better adapted to the needs and spirit of the time,—than the philological branches pursued alone would yield.
But how shall this idea be realised in the curricula of our intermediate educational institutions? It is unquestionable in my mind that the German Realschulen and Realgymnasien, where the exclusive classical course is for the most part replaced by mathematics, science, and modern languages, give the average man a more timely education than the gymnasium proper, although they are not yet regarded as fit preparatory schools for future theologians and professional philologists. The German gymnasiums are too one-sided. With these the first changes are to be made; of these alone we shall speak here. Possibly a single preparatory school, suitably planned, might serve all purposes.
Shall we, then, in our gymnasiums fill out the hours of study which stand at our disposal, or are still to be wrested from the classicists, with as great and as varied a quantity of mathematical and scientific matter as possible? Expect no such proposition from me. No one will suggest such a course who has himself been actively engaged in scientific thought. Thoughts can be awakened and fructified as a field is fructified by sunshine and rain. But thoughts cannot be juggled out and worried out by heaping up materials and the hours of instruction, nor by any sort of precepts: they must grow naturally of their own free accord. Furthermore, thoughts cannot be accumulated beyond a certain limit in a single head, any more than the produce of a field can be increased beyond certain limits.
I believe that the amount of matter necessary for a useful education, such as should be offered to all the pupils of a preparatory school, is very small. If I had the requisite influence, I should, in all composure, and fully convinced that I was doing what was best, first greatly curtail in the lower classes the amount of matter in both the classical and the scientific courses; I should cut down considerably the number of the school hours and the work done outside the school. I am not with many teachers of opinion that ten hours work a day for a child is not too much. I am convinced that the mature men who offer this advice so lightly are themselves unable to give their attention successfully for as long a time to any subject that is new to them, (for example, to elementary mathematics or physics,) and I would ask every one who thinks the contrary to make the experiment upon himself. Learning and teaching are not routine office-work that can be kept up mechanically for long periods. But even such work tires in the end. If our young men are not to enter the universities with blunted and impoverished minds, if they are not to leave in the preparatory schools their vital energy, which they should there gather, great changes must be made. Waiving the injurious effects of overwork upon the body, the consequences of it for the mind seem to me positively dreadful.
I know of nothing more terrible than the poor creatures who have learned too much. Instead of that sound powerful judgment which would probably have grown up if they had learned nothing, their thoughts creep timidly and hypnotically after words, principles, and formulæ, constantly by the same paths. What they have acquired is a spider's web of thoughts too weak to furnish sure supports, but complicated enough to produce confusion.