At rest, we hear a piece of music played in the same tempo at all distances. But the tempo will be seemingly accelerated if we are carried rapidly towards the band, or retarded if we are carried rapidly away from it.[14]
Fig. 15.
Picture to yourself a cross, say the sails of a wind-mill (Fig. 15), in uniform rotation about its centre. Clearly, the rotation of the cross will appear to you more slowly executed if you are carried very rapidly away from it. For the post which in this case conveys to you the light and brings to you the news of the successive positions of the cross will have to travel in each successive instant over a longer path.
Now this must also be the case with the rotation (the revolution) of the satellite of Jupiter. The greatest retardation of the eclipse (16-1/2 minutes), due to the passage of the earth from E1 to E2, or to its removal from Jupiter by a distance equal to the diameter of the orbit of the earth, plainly corresponds to the time which it takes light to traverse a distance equal to the diameter of the earth's orbit. The velocity of light, that is, the distance described by light in a second, as determined by this calculation, is 311,000 kilometres,[15] or 193,000 miles. A subsequent correction of the diameter of the earth's orbit, gives, by the same method, the velocity of light as approximately 186,000 miles a second.
The method is exactly that of Galileo; only better conditions are selected. Instead of a short terrestrial distance we have the diameter of the earth's orbit, three hundred and seven million kilometres; in place of the uncovered and covered lanterns we have the satellite of Jupiter, which alternately appears and disappears. Galileo, therefore, although he could not carry out himself the proposed measurement, found the lantern by which it was ultimately executed.
Physicists did not long remain satisfied with this beautiful discovery. They sought after easier methods of measuring the velocity of light, such as might be performed on the earth. This was possible after the difficulties of the problem were clearly exposed. A measurement of the kind referred to was executed in 1849 by Fizeau (born at Paris in 1819).
I shall endeavor to make the principle of Fizeau's apparatus clear to you. Let s (Fig. 16) be a disk free to rotate about its centre, and perforated at its rim with a series of holes. Let l be a luminous point casting its light on an unsilvered glass, a, inclined at an angle of forty-five degrees to the axis of the disk. The ray of light, reflected at this point, passes through one of the holes of the disk and falls at right angles upon a mirror b, erected at a point about five miles distant. From the mirror b the light is again reflected, passes once more through the hole in s, and, penetrating the glass plate, finally strikes the eye, o, of the observer. The eye, o, thus, sees the image of the luminous point l through the glass plate and the hole of the disk in the mirror b.