Let us consider, for example, a wheel and axle (Fig. 35) having the radii 1 and 2 metres, loaded respectively with the weights 2 and 1 kilogrammes. On turning the wheel and axle, the 1 kilogramme-weight, let us say, sinks two metres, while the 2 kilogramme-weight rises one metre. On both sides the product
KGR. M. KGR. M.
1 × 2 = 2 × 1.
is equal. So long as this is so, the wheel and axle will not move of itself. But if we take such loads, or so change the radii of the wheels, that this product (kgr. × metre) on displacement is in excess on one side, that side will sink. As we see, this product is characteristic for mechanical events, and for this reason has been invested with a special name, work.
In all mechanical processes, and as all physical processes present a mechanical side, in all physical processes, work plays a determinative part. Electrical forces, also, produce only changes in which work is performed. To the extent that forces come into play in electrical phenomena, electrical phenomena, be they what they may, extend into the domain of mechanics and are subject to the laws which hold in this domain. The universally adopted measure of work, now, is the product of the force into the distance through which it acts, and in the C. G. S. system, the unit of work is the action through one centimetre of a force which would impart in one second to a gramme-mass a velocity-increment of one centimetre, that is, in round numbers, the action through a centimetre of a pressure equal to the weight of a milligramme. From a positively charged body, electricity, yielding to the force of repulsion and performing work, flows off to the earth, providing conducting connexions exist. To a negatively charged body, on the other hand, the earth under the same circumstances gives off positive electricity. The electrical work possible in the interaction of a body with the earth, characterises the electrical condition of that body. We will call the work which must be expended on the unit quantity of positive electricity to raise it from the earth to the body K the potential of the body K.[31]
We ascribe to the body K in the C. G. S. system the potential +1, if we must expend the unit of work to raise the positive electrostatic unit of electric quantity from the earth to that body; the potential -1, if we gain in this procedure the unit of work; the potential 0, if no work at all is performed in the operation.
The different parts of one and the same electrical conductor in electrical equilibrium have the same potential, for otherwise the electricity would perform work and move about upon the conductor, and equilibrium would not have existed. Different conductors of equal potential, put in connexion with one another, do not exchange electricity any more than bodies of equal temperature in contact exchange heat, or in connected vessels, in which the same pressures exist, liquids flow from one vessel to the other. Exchange of electricity takes place only between conductors of different potentials, but in conductors of given form and position a definite difference of potential is necessary for a spark, which pierces the insulating air, to pass between them.
On being connected, every two conductors assume at once the same potential. With this the means is given of determining the potential of a conductor through the agency of a second conductor expressly adapted to the purpose called an electrometer, just as we determine the temperature of a body with a thermometer. The values of the potentials of bodies obtained in this way simplify vastly our analysis of their electrical behavior, as will be evident from what has been said.
Think of a positively charged conductor. Double all the electrical forces exerted by this conductor on a point charged with unit quantity, that is, double the quantity at each point, or what is the same thing, double the total charge. Plainly, equilibrium still subsists. But carry, now, the positive electrostatic unit towards the conductor. Everywhere we shall have to overcome double the force of repulsion we did before, everywhere we shall have to expend double the work. By doubling the charge of the conductor a double potential has been produced. Charge and potential go hand in hand, are proportional. Consequently, calling the total quantity of electricity of a conductor Q and its potential V, we can write: Q = CV, where C stands for a constant, the import of which will be understood simply from noting that C = Q/V.[32] But the division of a number representing the units of quantity of a conductor by the number representing its units of potential tells us the quantity which falls to the share of the unit of potential. Now the number C here we call the capacity of a conductor, and have substituted, thus, in the place of the old relative determination of capacity, an absolute determination.[33]
In simple cases the connexion between charge, potential, and capacity is easily ascertained. Our conductor, let us say, is a sphere of radius r, suspended free in a large body of air. There being no other conductors in the vicinity, the charge q will then distribute itself uniformly upon the surface of the sphere, and simple geometrical considerations yield for its potential the expression V = q/r. Hence, q/V = r; that is, the capacity of a sphere is measured by its radius, and in the C. G. S. system in centimetres.[34] It is clear also, since a potential is a quantity divided by a length, that a quantity divided by a potential must be a length.