If we close the machine, as Rosetti did, we obtain a continuous current which has all the properties of a very weak galvanic current; for example, it produces a deflexion in a multiplier which we interpose, and so forth. We can directly ascertain, now, the mechanical work expended in the maintenance of this current.

If we charge a jar by means of a machine, the energy of the jar employed in the production of sparks, in the disruption of the insulators, etc., corresponds to a part only of the mechanical work expended, a second part of it being consumed in the arc which forms the circuit.[38] This machine, with the interposed jar, affords in miniature a picture of the transference of force, or more properly of work. And in fact nearly the same laws hold here for the economical coefficient as obtain for large dynamo-machines.

Another means of investigating electrical energy is by its transformation into heat. A long time ago (1838), before the mechanical theory of heat had attained its present popularity, Riess performed experiments in this field with the help of his electrical air-thermometer or thermo-electrometer.

Fig. 40.

If the discharge be conducted through a fine wire passing through the globe of the air-thermometer, a development of heat is observed proportional to the expression above-discussed W = 1/2QV. Although the total energy has not yet been transformed into measurable heat by this means, in as much as a portion is left behind in the spark in the air outside the thermometer, still everything tends to show that the total heat developed in all parts of the conductor and along all the paths of discharge is the equivalent of the work 1/2QV.

It is not important here whether the electrical energy is transformed all at once or partly, by degrees. For example, if of two equal jars one is charged with the quantity Q at the potential V the energy present is 1/2QV. If the first jar be discharged into the second, V, since the capacity is now doubled, falls to V/2. Accordingly, the energy 1/4QV remains, while 1/4QV is transformed in the spark of discharge into heat. The remainder, however, is equally distributed between the two jars so that each on discharge is still able to transform 1/8QV into heat.