When we reflect on the tremendous start which mechanics had over the other branches of physics, it is not to be wondered at that the attempt was always made to apply the notions of that science wherever this was possible. Thus the notion of mass, for example, was imitated by Coulomb in the notion of quantity of electricity. In the further development of the theory of electricity, the notion of work was likewise immediately introduced in the theory of potential, and heights of electrical level were measured by the work of unit of quantity raised to that level. But with this the preceding equation with all its consequences is given for electrical energy. The case with the other energies was similar.

Thermal energy, however, appears as a special case. Only by the peculiar experiments mentioned could it be discovered that heat is an energy. But the measure of this energy by Black's quantity of heat is the outcome of fortuitous circumstances. In the first place, the accidental slight variability of the capacity for heat c with the temperature, and the accidental slight deviation of the usual thermometrical scales from the scale derived from the tensions of gases, brings it about that the notion "quantity of heat" can be set up and that the quantity of heat ct corresponding to a difference of temperature t is nearly proportional to the energy of the heat. It is a quite accidental historical circumstance that Amontons hit upon the idea of measuring temperature by the tension of a gas. It is certain in this that he did not think of the work of the heat.[57] But the numbers standing for temperature, thus, are made proportional to the tensions of gases, that is, to the work done by gases, with otherwise equal changes of volume. It thus happens that temperature heights and level heights of work are proportional to one another.

If properties of the thermal condition varying greatly from the tensions of gases had been chosen, this relation would have assumed very complicated forms, and the agreement between heat and the other energies above considered would not subsist. It is very instructive to reflect upon this point. A natural law, therefore, is not implied in the conformity of the behavior of the energies, but this conformity is rather conditioned by the uniformity of our modes of conception and is also partly a matter of good fortune.

VI. THE DIFFERENCES OF THE ENERGIES AND THE LIMITS OF THE PRINCIPLE OF ENERGY.

Of every quantity of heat Q which does work in a reversible process (one unaccompanied by loss) between the absolute temperatures T1, T2, only the portion

(T1-T2)/T1

is transformed into work, while the remainder is transferred to the lower temperature-level T2. This transferred portion can, upon the reversal of the process, with the same expenditure of work, again be brought back to the level T1. But if the process is not reversible, then more heat than in the foregoing case flows to the lower level, and the surplus can no longer be brought back to the higher level T2 without some special expenditure. W. Thomson (1852), accordingly, drew attention to the fact, that in all non-reversible, that is, in all real thermal processes, quantities of heat are lost for mechanical work, and that accordingly a dissipation or waste of mechanical energy is taking place. In all cases, heat is only partially transformed into work, but frequently work is wholly transformed into heat. Hence, a tendency exists towards a diminution of the mechanical energy and towards an increase of the thermal energy of the world.

For a simple, closed cyclical process, accompanied by no loss, in which the quantity of heat Q_{1} is taken from the level T_{1}, and the quantity Q_{2} is deposited upon the level T_{2}, the following relation, agreeably to equation (2), exists,

-(Q1/T1) + (Q2/T2) = 0.