But not only is a significant part played in the beginning of an inquiry by co-operative circumstances beyond the foresight of the investigator; their influence is also active in its prosecution. Dufay, thus, whilst following up the behavior of one electrical state which he had assumed, discovers the existence of two. Fresnel learns by accident that the interference-bands received on ground glass are seen to better advantage in the open air. The diffraction-phenomenon of two slits proved to be considerably different from what Fraunhofer had anticipated, and in following up this circumstance he was led to the important discovery of grating-spectra. Faraday's induction-phenomenon departed widely from the initial conception which occasioned his experiments, and it is precisely this deviation that constitutes his real discovery.

Every man has pondered on some subject. Every one of us can multiply the examples cited, by less illustrious ones from his own experience. I shall cite but one. On rounding a railway curve once, I accidentally remarked a striking apparent inclination of the houses and trees. I inferred that the direction of the total resultant physical acceleration of the body reacts physiologically as the vertical. Afterwards, in attempting to inquire more carefully into this phenomenon, and this only, in a large whirling machine, the collateral phenomena conducted me to the sensation of angular acceleration, vertigo, Flouren's experiments on the section of the semi-circular canals etc., from which gradually resulted views relating to sensations of direction which are also held by Breuer and Brown, which were at first contested on all hands, but are now regarded on many sides as correct, and which have been recently enriched by the interesting inquiries of Breuer concerning the macula acustica, and Kreidel's experiments with magnetically orientable crustacea.[89] Not disregard of accident but a direct and purposeful employment of it advances research.

The more powerful the psychical connexion of the memory pictures is,—and it varies with the individual and the mood,—the more apt is the same accidental observation to be productive of results. Galileo knows that the air has weight; he also knows of the "resistance to a vacuum," expressed both in weight and in the height of a column of water. But the two ideas dwelt asunder in his mind. It remained for Torricelli to vary the specific gravity of the liquid measuring the pressure, and not till then was the air included in the list of pressure-exerting fluids. The reversal of the lines of the spectrum was seen repeatedly before Kirchhoff, and had been mechanically explained. But it was left for his penetrating vision to discern the evidence of the connexion of this phenomenon with questions of heat, and to him alone through persistent labor was revealed the sweeping significance of the fact for the mobile equilibrium of heat. Supposing, then, that such a rich organic connexion of the elements of memory exists, and is the prime distinguishing mark of the inquirer, next in importance certainly is that intense interest in a definite object, in a definite idea, which fashions advantageous combinations of thought from elements before disconnected, and obtrudes that idea into every observation made, and into every thought formed, making it enter into relationship with all things. Thus Bradley, deeply engrossed with the subject of aberration, is led to its solution by an exceedingly unobtrusive experience in crossing the Thames. It is permissible, therefore, to ask whether accident leads the discoverer, or the discoverer accident, to a successful outcome in scientific quests.

No man should dream of solving a great problem unless he is so thoroughly saturated with his subject that everything else sinks into comparative insignificance. During a hurried meeting with Mayer in Heidelberg once, Jolly remarked, with a rather dubious implication, that if Mayer's theory were correct water could be warmed by shaking. Mayer went away without a word of reply. Several weeks later, and now unrecognised by Jolly, he rushed into the latter's presence exclaiming: "Es ischt aso!" (It is so, it is so!) It was only after considerable explanation that Jolly found out what Mayer wanted to say. The incident needs no comment.[90]

A person deadened to sensory impressions and given up solely to the pursuit of his own thoughts, may also light on an idea that will divert his mental activity into totally new channels. In such cases it is a psychical accident, an intellectual experience, as distinguished from a physical accident, to which the person owes his discovery—a discovery which is here made "deductively" by means of mental copies of the world, instead of experimentally. Purely experimental inquiry, moreover, does not exist, for, as Gauss says, virtually we always experiment with our thoughts. And it is precisely that constant, corrective interchange or intimate union of experiment and deduction, as it was cultivated by Galileo in his Dialogues and by Newton in his Optics, that is the foundation of the benign fruitfulness of modern scientific inquiry as contrasted with that of antiquity, where observation and reflexion ofttimes pursued their respective courses like two strangers.

We have to wait for the appearance of a favorable physical accident. The movement of our thoughts obeys the law of association. In the case of meagre experience the result of this law is simply the mechanical reproduction of definite sensory experiences. On the other hand, if the psychical life is subjected to the incessant influences of a powerful and rich experience, then every representative element in the mind is connected with so many others that the actual and natural course of the thoughts is easily influenced and determined by insignificant circumstances, which accidentally are decisive. Hereupon, the process termed imagination produces its protean and infinitely diversified forms. Now what can we do to guide this process, seeing that the combinatory law of the images is without our reach? Rather let us ask, what influence can a powerful and constantly recurring idea exert on the movement of our thoughts? According to what has preceded, the answer is involved in the question itself. The idea dominates the thought of the inquirer, not the latter the former.

Let us see, now, if we can acquire a profounder insight into the process of discovery. The condition of the discoverer is, as James has aptly remarked, not unlike the situation of a person who is trying to remember something that he has forgotten. Both are sensible of a gap, and have only a remote presentiment of what is missing. Suppose I meet in a company a well-known and affable gentleman whose name I have forgotten, and who to my horror asks to be introduced to some one. I set to work according to Lichtenberg's rule, and run down the alphabet in search of the initial letter of his name. A vague sympathy holds me at the letter G. Tentatively I add the second letter and am arrested at e, and long before I have tried the third letter r, the name "Gerson" sounds sonorously upon my ear, and my anguish is gone. While taking a walk I meet a gentleman from whom I receive a communication. On returning home, and in attending to weightier affairs, the matter slips my mind. Moodily, but in vain, I ransack my memory. Finally I observe that I am going over my walk again in thought. On the street corner in question the self-same gentleman stands before me and repeats his communication. In this process are successively recalled to consciousness all the percepts which were connected with the percept that was lost, and with them, finally, that, too, is brought to light. In the first case—where the experience had already been made and is permanently impressed on our thought—a systematic procedure is both possible and easy, for we know that a name must be composed of a limited number of sounds. But at the same time it should be observed that the labor involved in such a combinatorial task would be enormous if the name were long and the responsiveness of the mind weaker.

It is often said, and not wholly without justification, that the scientist has solved a riddle. Every problem in geometry may be clothed in the garb of a riddle. Thus: "What thing is that M which has the properties A, B, C?" "What circle is that which touches the straight lines A, B, but touches B in the point C?" The first two conditions marshal before the imagination the group of circles whose centres lie in the line of symmetry of A, B. The third condition reminds us of all the circles having centres in the straight line that stands at right angles to B in C. The common term, or common terms, of the two groups of images solves the riddle—satisfies the problem. Puzzles dealing with things or words induce similar processes, but the memory in such cases is exerted in many directions and more varied and less clearly ordered provinces of ideas are surveyed. The difference between the situation of a geometer who has a construction to make, and that of an engineer, or a scientist, confronted with a problem, is simply this, that the first moves in a field with which he is thoroughly acquainted, whereas the two latter are obliged to familiarise themselves with this field subsequently, and in a measure far transcending what is commonly required. In this process the mechanical engineer has at least always a definite goal before him and definite means to accomplish his aim, whilst in the case of the scientist that aim is in many instances presented only in vague and general outlines. Often the very formulation of the riddle devolves on him. Frequently it is not until the aim has been reached that the broader outlook requisite for systematic procedure is obtained. By far the larger portion of his success, therefore, is contingent on luck and instinct. It is immaterial, so far as its character is concerned, whether the process in question is brought rapidly to a conclusion in the brain of one man, or whether it is spun out for centuries in the minds of a long succession of thinkers. The same relation that a word solving a riddle bears to that riddle is borne by the modern conception of light to the facts discovered by Grimaldi, Römer, Huygens, Newton, Young, Malus, and Fresnel, and only by the help of this slowly developed conception is our mental vision enabled to embrace the broad domain of facts in question.

A welcome complement to the discoveries which the history of civilisation and comparative psychology have furnished, is to be found in the confessions of great scientists and artists. Scientists and artists, we might say, for Liebig boldly declared there was no essential difference between the two. Are we to regard Leonardo da Vinci as a scientist or as an artist? If the artist builds up his work from a few motives, the scientist discovers the motives which permeate reality. If scientists like Lagrange or Fourier are in a certain measure artists in the presentation of their results, on the other hand, artists like Shakespeare or Ruysdael are scientists in the insight which must have preceded their creations.

Newton, when questioned about his methods of work, could give no other answer but that he was wont to ponder again and again on a subject; and similar utterances are accredited to D'Alembert and Helmholtz. Scientists and artists both recommend persistent labor. After the repeated survey of a field has afforded opportunity for the interposition of advantageous accidents, has rendered all the traits that suit with the mood or the dominant thought more vivid, and has gradually relegated to the background all things that are inappropriate, making their future appearance impossible; then from the teeming, swelling host of fancies which a free and high-flown imagination calls forth, suddenly that particular form arises to the light which harmonises perfectly with the ruling idea, mood, or design. Then it is that that which has resulted slowly as the result of a gradual selection, appears as if it were the outcome of a deliberate act of creation. Thus are to be explained the statements of Newton, Mozart, Richard Wagner, and others, when they say that thoughts, melodies, and harmonies had poured in upon them, and that they had simply retained the right ones. Undoubtedly, the man of genius, too, consciously or instinctively, pursues systematic methods wherever it is possible; but in his delicate presentiment he will omit many a task or abandon it after a hasty trial on which a less endowed man would squander his energies in vain. Thus, the genius accomplishes[91] in a brief space of time undertakings for which the life of an ordinary man would far from suffice. We shall hardly go astray if we regard genius as only a slight deviation from the average mental endowment—as possessing simply a greater sensitiveness of cerebral reaction and a greater swiftness of reaction. The men who, obeying their inner impulses, make sacrifices for an idea instead of advancing their material welfare, may appear to the full-blooded Philistine as fools; yet we shall scarcely adopt Lombroso's view, that genius is to be regarded as a disease, although it is unfortunately true that the sensitive brains and fragile constitutions succumb most readily to sickness.