Properties of organic acids
It will be remembered that acids were studied in the second lesson. It was found that the common properties of acids are a sour taste, ability to combine with alkalis in the formation of salts, and that all acids contain hydrogen. These same properties that were studied in the second lesson in reference to mineral acids, such as hydrochloric and sulfuric, apply also to the organic acids. The organic acids, however, as a class are not so strong or active as the mineral acids.
All organic acids are compounds of carbon, hydrogen, and oxygen, the same as alcohols and ethers, the chief difference between these compounds and acids being that the acids contain a greater proportion of oxygen. One of the simplest organic acids is formic acid (HCO.OH). This acid is the active principle in the sting of the red ant, and also of stinging nettles. It produces blisters when applied to the skin.
Process of making acetic acid
Impure acetic acid (C2H4O2) is very well known to all under the name of vinegar. Acetic acid may be obtained by distilling wood. If it could be manufactured cheaply enough, vinegar made from wood would be fully as wholesome as the best cider vinegars, but this being an expensive process of manufacture, the temptation of the food adulterator is to make the vinegar of sulfuric acid, which is much cheaper than the mild acetic acid, but much more harmful when taken into the body.
The formic and the acetic acids are examples of a series of organic acids known as fatty acids. Other members of the series are—
| Propionic acid | C3H6O2 |
| Butyric " | C4H8O2 |
| Palmitic " | C16H32O2 |
| Stearic " | C18H36O2 |
Process of making soap
These fatty acids are very important to the food scientist as they combine with glycerin to form fats. When combined with alkalis under a certain temperature they form soap. Perhaps some of our older students may remember the soap kettle on the farm at home, in which lard cracklings and other fatty fragments of the animal were boiled with lye or caustic potash to form home-made soap. The chemical action that took place was a combination of these fatty acids with the caustic potash or lye. The glycerin was set free and remained in the bottom of the kettle as soft soap. Reference will be made to these acids again, in Lesson IV, where the study of fats will be taken up in detail. (See "Fats and Oils," under Lesson IV, Chemistry of Foods, p. 122).
Oxalic acid