All this work must be done merely to prepare the raw cotton to be twisted into the tiny threads that you see by raveling a piece of cotton cloth. Now comes the actual twisting. If you fasten one end of a very soft string and twist the other and wind it on a spool, you will get a spool of finer, stronger, and harder-twisted string than you had at first. This is exactly what the "ring-spinner" does. Imagine a bobbin full of roving standing on a frame. Down below it are some rolls between which the thread from the bobbin passes to a second bobbin which is fast on a spindle. Around this spindle is the "spinning-ring," a ring which is made to whirl around by an endless belt. This whirling twists the thread, and another part of the machine winds it upon the second bobbin. Hundreds of these ring-spinners and bobbins are on a single "spinning-frame" and accomplish a great deal in a very short time. The threads that are to be used for the "weft" or "filling" go directly into the shuttles of the weavers after being spun; but those which are to be used for "warp" are wound first on spools, then on beams to go into the loom.
Little children weave together strips of paper, straws, and splints,—"over one, under one,"—and the weaving of plain cotton cloth is in principle nothing more than this. The first thing to do in weaving is to stretch out the warp evenly. This warp is simply many hundreds of tiny threads as long as the cloth is to be, sometimes forty or fifty yards. They must be stretched out side by side and close
together. To make them regular, they are passed between the teeth of a sort of upright comb; then they are wound upon the loom beam, a horizontal beam at the back of the loom. Here they are as close together as they will be in the cloth. With a magnifying glass it is easy to count the threads of the warp in an inch of cloth. Some kinds of cloth have a hundred or even more to the inch. In order to make cloth, the weaver must manage in some way to lower every other one of these little threads and run his shuttle over them, as the children do the strips of paper in their paper weaving. Then he must lower the other set and run the shuttle over them. "Drawing in" makes this possible. After the threads leave the beam, they are drawn through the "harnesses." These are hanging frames, one in front of the other, filled with stiff, perpendicular threads or wires drawn tight, and with an eye in each thread. Through these eyes the threads of the warp are drawn, the odd ones through one, and the even through the other. Then, keeping the threads in the same order, they pass through the teeth of a "reed,"—that is, a hanging frame shaped like a great comb as long as the loom is wide; and last, they are fastened to the "front beam," which runs in front of the weaver's seat and on which the cloth is to be rolled when it has been woven. Each harness is connected with a treadle. The weaver puts his foot on the treadle of the odd threads and presses them down. Then he sends his shuttle, containing a bobbin full of thread, sliding across over the odd threads and
under the even. He puts his foot on the treadle of the even threads and sends the shuttle back over the even and under the odd. At each trip of the shuttle, the heavy reed is drawn back toward the weaver to push the last thread of the woof or filling firmly into place.
This is the way cloth is woven in the hand looms which used to be in every household. The power loom used in factories is, even in its simplest form, a complicated machine; but its principle is exactly the same. If colors are to be used, great care is needed in arranging warp and woof. If you ravel a piece of checked gingham, you will see that half the warp is white and half colored; and that in putting in the woof or filling, a certain number of the threads are white and an equal number are colored. If you look closely at the weaving of a tablecloth, you will see that the satin-like figures are woven by bringing the filling thread not "over one and under one," but often over two or three and under one. In drilling or any other twilled goods, several harnesses have to be used because the warp thread is not lowered directly in line with the one preceding, but diagonally. Such work as this used to require a vast amount of skill and patience; but the famous Jacquard machine will do it with ease, and will do more complicated weaving than any one ever dreamed of before its invention, for it will weave not only regular figures extending across the cloth, but can be made to introduce clusters of flowers, a figure, or a face wherever it is desired. By the aid of this, every
little warp thread or cluster of threads can be lifted by its own hooked wire without interfering with any other thread. Cards of paper or thin metal are made for each pattern, leaving a hole wherever the hook is to slip through and lift up a thread. After the cards are once made, the work is as easy as plain weaving; but there must be a separate card for every thread of filling in the pattern, and sometimes a single design has required as many as thirty thousand pattern cards.
The machines in a cotton mill are the result of experimenting, lasting through many years. They do not seem quite so "human" as those which help to carry on some parts of other manufactures; but they are wonderfully ingenious. For instance, the sliver is so light that it seems to have hardly any weight, but it balances a tiny support. If the sliver breaks, the support falls, and this stops the machine. Again, if one of the threads of the warp breaks when it is being wound on the beam, a slender bent wire that has been hung on it falls. It drops between two rollers and stops them. Then the workman knows that something is wrong, and a glance will show where attention is needed. Success in a cotton mill demands constant attention to details. A mill manager who has been very successful has given to those of less experience some wise directions about running a mill. For one thing, he reminds them that building is expensive and that floor space counts. If by rearranging looms space can be made for more spindles, it is well worth while to rearrange. He tells
them to study their machines and see whether they are working so slowly that they cannot do as much as possible, or so fast as to strain the work. He bids them to keep their gearings clean, to be clear and definite in their orders, and to read the trade papers; but above everything else to look out for the little things, a little leak in the mill dam, a little too much tightness in a belt, or the idleness of just one spindle. Herein lies, he says, one of the great differences between a successful and an unsuccessful superintendent.
Weaving as practiced in factories is a complicated business; but whether it is done with a simple hand loom in a cottage or with a big power loom in a great factory, there are always three movements. One separates the warp threads; one drives the shuttle between them; and one swings the reed against the filling thread just put in.