It is a great story, this of the Wright Brothers, and one worth all the detail that can be spared it. It begins on the 16th April, 1867, when Wilbur Wright was born within eight miles of Newcastle, Indiana. Before Orville’s birth on the 19th August, 1871, the Wright family had moved to Dayton, Ohio, and settled on what is known as the ‘West Side’ of the town. Here the brothers grew up, and, when Orville was still a boy in his teens, he started a printing business, which, as Griffith Brewer remarks, was only limited by the smallness of his machine and small quantity of type at his disposal. This machine was in such a state that pieces of string and wood were incorporated in it by way of repair, but on it Orville managed to print a boys’ paper which gained considerable popularity in Dayton ‘West Side.’ Later, at the age of seventeen, he obtained a more efficient outfit, with which he launched a weekly newspaper, four pages in size, entitled The West Side News. After three months’ running the paper was increased in size and Wilbur came into the enterprise as editor, Orville remaining publisher. In 1894 the two brothers began the publication of a weekly magazine, Snap-Shots, to which Wilbur contributed a series of articles on local affairs that gave evidence of the incisive and often sarcastic manner in which he was able to express himself throughout his life. Dr Griffith Brewer describes him as a fearless critic, who wrote on matters of local interest in a kindly but vigorous manner, which did much to maintain the healthy public municipal life of Dayton.
Editorial and publishing enterprise was succeeded by the formation, just across the road from the printing works, of the Wright Cycle Company, where the two brothers launched out as cycle manufacturers with the ‘Van Cleve’ bicycle, a machine of great local repute for excellence of construction, and one which won for itself a reputation that lasted long after it had ceased to be manufactured. The name of the machine was that of an ancestor of the brothers, Catherine Van Cleve, who was one of the first settlers at Dayton, landing there from the River Miami on April 1st, 1796, when the country was virgin forest.
It was not until 1896 that the mechanical genius which characterised the two brothers was turned to the consideration of aeronautics. In that year they took up the problem thoroughly, studying all the aeronautical information then in print. Lilienthal’s writings formed one basis for their studies, and the work of Langley assisted in establishing in them a confidence in the possibility of a solution to the problems of mechanical flight. In 1909, at the banquet given by the Royal Aero Club to the Wright Brothers on their return to America, after the series of demonstration flights carried out by Wilbur Wright on the Continent, Wilbur paid tribute to the great pioneer work of Stringfellow, whose studies and achievements influenced his own and Orville’s early work. He pointed out how Stringfellow devised an aeroplane having two propellers and vertical and horizontal steering, and gave due place to this early pioneer of mechanical flight.
Neither of the brothers was content with mere study of the work of others. They collected all the theory available in the books published up to that time, and then built man-carrying gliders with which to test the data of Lilienthal and such other authorities as they had consulted. For two years they conducted outdoor experiments in order to test the truth or otherwise of what were enunciated as the principles of flight; after this they turned to laboratory experiments, constructing a wind tunnel in which they made thousands of tests with models of various forms of curved planes. From their experiments they tabulated thousands of readings, which Griffith Brewer remarks as giving results equally efficient with those of the elaborate tables prepared by learned institutions.
Wilbur Wright has set down the beginnings of the practical experiments made by the two brothers very clearly. ‘The difficulties,’ he says, ‘which obstruct the pathway to success in flying machine construction are of three general classes: (1) Those which relate to the construction of the sustaining wings; (2) those which relate to the generation and application of the power required to drive the machine through the air; (3) those relating to the balancing and steering of the machine after it is actually in flight. Of these difficulties two are already to a certain extent solved. Men already know how to construct wings, or aeroplanes, which, when driven through the air at sufficient speed, will not only sustain the weight of the wings themselves, but also that of the engine and the engineer as well. Men also know how to build engines and screws of sufficient lightness and power to drive these planes at sustaining speed. Inability to balance and steer still confronts students of the flying problem, although nearly ten years have passed (since Lilienthal’s success). When this one feature has been worked out, the age of flying machines will have arrived, for all other difficulties are of minor importance.
‘The person who merely watches the flight of a bird gathers the impression that the bird has nothing to think of but the flapping of its wings. As a matter of fact, this is a very small part of its mental labour. Even to mention all the things the bird must constantly keep in mind in order to fly securely through the air would take a considerable time. If I take a piece of paper and, after placing it parallel with the ground, quickly let it fall, it will not settle steadily down as a staid, sensible piece of paper ought to do, but it insists on contravening every recognised rule of decorum, turning over and darting hither and thither in the most erratic manner, much after the style of an untrained horse. Yet this is the style of steed that men must learn to manage before flying can become an everyday sport. The bird has learned this art of equilibrium, and learned it so thoroughly that its skill is not apparent to our sight. We only learn to appreciate it when we can imitate it.
‘Now, there are only two ways of learning to ride a fractious horse: one is to get on him and learn by actual practice how each motion and trick may be best met; the other is to sit on a fence and watch the beast awhile, and then retire to the house and at leisure figure out the best way of overcoming his jumps and kicks. The latter system is the safer, but the former, on the whole, turns out the larger proportion of good riders. It is very much the same in learning to ride a flying machine; if you are looking for perfect safety you will do well to sit on a fence and watch the birds, but if you really wish to learn you must mount a machine and become acquainted with its tricks by actual trial. The balancing of a gliding or flying machine is very simple in theory. It merely consists in causing the centre of pressure to coincide with the centre of gravity.’
Wilbur Wright.
These comments are taken from a lecture delivered by Wilbur Wright before the Western Society of Engineers in September of 1901, under the presidency of Octave Chanute. In that lecture Wilbur detailed the way in which he and his brother came to interest themselves in aeronautical problems and constructed their first glider. He speaks of his own notice of the death of Lilienthal in 1896, and of the way in which this fatality roused him to an active interest in aeronautical problems, which was stimulated by reading Professor Marey’s Animal Mechanism, not for the first time. ‘From this I was led to read more modern works, and as my brother soon became equally interested with myself, we soon passed from the reading to the thinking, and finally to the working stage. It seemed to us that the main reason why the problem had remained so long unsolved was that no one had been able to obtain any adequate practice. We figured that Lilienthal in five years of time had spent only about five hours in actual gliding through the air. The wonder was not that he had done so little, but that he had accomplished so much. It would not be considered at all safe for a bicycle rider to attempt to ride through a crowded city street after only five hours’ practice, spread out in bits of ten seconds each over a period of five years; yet Lilienthal with this brief practice was remarkably successful in meeting the fluctuations and eddies of wind-gusts. We thought that if some method could be found by which it would be possible to practise by the hour instead of by the second there would be hope of advancing the solution of a very difficult problem. It seemed feasible to do this by building a machine which would be sustained at a speed of eighteen miles per hour, and then finding a locality where winds of this velocity were common. With these conditions a rope attached to the machine to keep it from floating backward would answer very nearly the same purpose as a propeller driven by a motor, and it would be possible to practise by the hour, and without any serious danger, as it would not be necessary to rise far from the ground, and the machine would not have any forward motion at all. We found, according to the accepted tables of air pressure on curved surfaces, that a machine spreading 200 square feet of wing surface would be sufficient for our purpose, and that places would easily be found along the Atlantic coast where winds of sixteen to twenty-five miles were not at all uncommon. When the winds were low it was our plan to glide from the tops of sandhills, and when they were sufficiently strong to use a rope for our motor and fly over one spot. Our next work was to draw up the plans for a suitable machine. After much study we finally concluded that tails were a source of trouble rather than of assistance, and therefore we decided to dispense with them altogether. It seemed reasonable that if the body of the operator could be placed in a horizontal position instead of the upright, as in the machines of Lilienthal, Pilcher, and Chanute, the wind resistance could be very materially reduced, since only one square foot instead of five would be exposed. As a full half horse-power would be saved by this change, we arranged to try at least the horizontal position. Then the method of control used by Lilienthal, which consisted in shifting the body, did not seem quite as quick or effective as the case required; so, after long study, we contrived a system consisting of two large surfaces on the Chanute double-deck plan, and a smaller surface placed a short distance in front of the main surfaces in such a position that the action of the wind upon it would counterbalance the effect of the travel of the centre of pressure on the main surfaces. Thus changes in the direction and velocity of the wind would have little disturbing effect, and the operator would be required to attend only to the steering of the machine, which was to be effected by curving the forward surface up or down. The lateral equilibrium and the steering to right or left was to be attained by a peculiar torsion of the main surfaces, which was equivalent to presenting one end of the wings at a greater angle than the other. In the main frame a few changes were also made in the details of construction and trussing employed by Mr Chanute. The most important of these were: (1) The moving of the forward main crosspiece of the frame to the extreme front edge; (2) the encasing in the cloth of all crosspieces and ribs of the surfaces; (3) a rearrangement of the wires used in trussing the two surfaces together, which rendered it possible to tighten all the wires by simply shortening two of them.’